File size: 7,478 Bytes
9406eac
6f14fd9
 
 
 
9406eac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import tempfile
import time
import re
import logging
from datetime import datetime
import gradio as gr
import google.generativeai as genai
from PyPDF2 import PdfReader
from tika import parser
from unstructured.partition.pdf import partition_pdf

# Configure logging
tmp_log = "pdf_processor_log.txt"
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler(tmp_log)
    ]
)
logger = logging.getLogger("pdf_processor")

# Load API key from environment
API_KEY = os.getenv("GOOGLE_API_KEY", None)
if not API_KEY:
    logger.warning("GOOGLE_API_KEY not set in environment.")
else:
    genai.configure(api_key=API_KEY)

# Globals to store state
EXTRACTED_TEXT = ""
PDF_SECTIONS = []
EXTRACTION_METHOD = ""

# --- Extraction Functions ---
def extract_text_with_unstructured(pdf_path):
    logger.info("Extracting via Unstructured.io...")
    elements = partition_pdf(filename=pdf_path, extract_images_in_pdf=False)
    sections, current = [], {"title":"Introduction","content":""}
    for e in elements:
        if hasattr(e, "text") and (t := e.text.strip()):
            if len(t)<80 and (t.isupper() or t.endswith(':') or re.match(r'^[0-9]+\.?\s+', t)):
                if current["content"]: sections.append(current)
                current = {"title":t, "content":""}
            else:
                current["content"] += t + "\n\n"
    if current["content"]: sections.append(current)
    return sections

def extract_text_with_pypdf(pdf_path):
    logger.info("Extracting via PyPDF2...")
    reader = PdfReader(pdf_path)
    full = ""
    for i,p in enumerate(reader.pages,1):
        if (txt := p.extract_text()): full += f"\n\n--- Page {i} ---\n\n{txt}"
    parts = re.split(r"\n\s*([A-Z][A-Z\s]+:?|[0-9]+\.\s+[A-Z].*?)\s*\n", full)
    if len(parts)>1:
        return [{"title":parts[i].strip(),"content":parts[i+1].strip()} for i in range(1,len(parts),2)]
    # fallback to single section
    return [{"title":"Document","content":full}]

def extract_text_with_tika(pdf_path):
    logger.info("Extracting via Tika...")
    parsed = parser.from_file(pdf_path)
    lines = parsed.get("content","").split("\n")
    sections, current = [], {"title":"Introduction","content":""}
    for ln in lines:
        ln = ln.strip()
        if not ln: continue
        if len(ln)<80 and (ln.isupper() or ln.endswith(':') or re.match(r'^[0-9]+\.?\s+[A-Z]', ln)):
            if current["content"]: sections.append(current)
            current = {"title":ln, "content":""}
        else:
            current["content"] += ln + "\n\n"
    if current["content"]: sections.append(current)
    return sections

# --- Gemini API calls ---
def generate_greg_brockman_summary(content):
    model = genai.GenerativeModel('gemini-1.5-pro')
    prompt = f"""
You are an expert document analyst...
{content}
"""
    try:
        resp = model.generate_content(prompt)
        return resp.text, None
    except Exception as e:
        logger.error(e)
        return None, str(e)

def answer_question_about_pdf(content, question):
    model = genai.GenerativeModel('gemini-1.5-pro')
    prompt = f"""
You are a precise document analysis assistant...
DOCUMENT CONTENT:
{content}
QUESTION: {question}
"""
    try:
        resp = model.generate_content(prompt)
        return resp.text, None
    except Exception as e:
        logger.error(e)
        return None, str(e)

# --- Processing & Q&A ---
def process_pdf(pdf_file, progress=gr.Progress()):
    global EXTRACTED_TEXT, PDF_SECTIONS, EXTRACTION_METHOD
    if not API_KEY:
        return None, None, "❌ Set GOOGLE_API_KEY in settings.", ""
    if pdf_file is None:
        return None, None, "❌ No file uploaded.", ""
    tmp = tempfile.gettempdir()
    path = os.path.join(tmp, pdf_file.name)
    with open(path, 'wb') as f: f.write(pdf_file.read())
    methods = [("unstructured", extract_text_with_unstructured),
               ("pypdf", extract_text_with_pypdf),
               ("tika", extract_text_with_tika)]
    for name, fn in methods:
        try:
            secs = fn(path)
            if secs:
                EXTRACTION_METHOD = name
                PDF_SECTIONS = secs
                break
        except:
            continue
    if not PDF_SECTIONS:
        return None, None, "❌ Extraction failed.", ""
    combined, struct = "", ""
    for i,sec in enumerate(PDF_SECTIONS,1):
        struct += f"{i}. {sec['title']}\n"
        block = f"## {sec['title']}\n{sec['content']}\n\n"
        combined += block if len(combined+block)<30000 else f"## {sec['title']}\n[Truncated]\n\n"
    EXTRACTED_TEXT = combined
    summary, err = generate_greg_brockman_summary(combined)
    if err:
        return None, struct, f"❌ {err}", combined
    return summary, struct, "βœ… Done", f"Used {EXTRACTION_METHOD}, {len(PDF_SECTIONS)} sections"

def ask_question(question):
    if not API_KEY: return "❌ Set GOOGLE_API_KEY."
    if not EXTRACTED_TEXT: return "❌ Process a PDF first."
    if not question.strip(): return "❌ Enter a question."
    ans, err = answer_question_about_pdf(EXTRACTED_TEXT, question)
    return ans if not err else f"❌ {err}"

def view_log():
    try:
        return open(tmp_log).read()
    except:
        return "Error reading log."

def save_summary(summary):
    if not summary: return "❌ No summary."
    fn = f"summary_{datetime.now():%Y%m%d_%H%M%S}.txt"
    open(fn, 'w', encoding='utf-8').write(summary)
    return f"βœ… Saved to {fn}"

def save_qa(question, answer):
    if not question or not answer: return "❌ Incomplete Q&A."
    fn = f"qa_{datetime.now():%Y%m%d_%H%M%S}.txt"
    with open(fn,'w',encoding='utf-8') as f:
        f.write(f"Q: {question}\n\nA: {answer}")
    return f"βœ… Saved to {fn}"

# --- Gradio UI ---
with gr.Blocks(title="PDF Analyzer with Gemini API") as app:
    gr.Markdown("# πŸ“„ PDF Analyzer with Gemini API")
    gr.Markdown("Upload a PDF, get a summary, ask questions.")
    with gr.Tab("PDF Processing"):
        pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"], type="binary")
        process_btn = gr.Button("Process PDF")
        summary_out = gr.Textbox(label="Summary", lines=15)
        struct_out = gr.Textbox(label="Structure", lines=8)
        status = gr.Markdown("")
        log_out = gr.Textbox(label="Log", lines=8)
        process_btn.click(process_pdf, inputs=[pdf_file],
                          outputs=[summary_out, struct_out, status, log_out])
    with gr.Tab("Ask Questions"):
        question = gr.Textbox(label="Question", lines=2)
        ask_btn = gr.Button("Ask")
        answer = gr.Textbox(label="Answer", lines=10)
        ask_btn.click(ask_question, inputs=[question], outputs=[answer])
    with gr.Tab("System Log"):
        refresh = gr.Button("Refresh Log")
        syslog = gr.Textbox(label="System Log", lines=15)
        refresh.click(view_log, inputs=None, outputs=[syslog])
    with gr.Row():
        save_sum_btn = gr.Button("Save Summary")
        save_sum_status = gr.Markdown("")
        save_sum_btn.click(save_summary, inputs=[summary_out], outputs=[save_sum_status])
    with gr.Row():
        save_qa_btn = gr.Button("Save Q&A")
        save_qa_status = gr.Markdown("")
        save_qa_btn.click(save_qa, inputs=[question, answer], outputs=[save_qa_status])

if __name__ == "__main__":
    # For Hugging Face Spaces, set `server_name="0.0.0.0"` if needed
    app.launch()