Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
tempfile, time, re, logging
|
3 |
+
from datetime import datetime
|
4 |
+
import gradio as gr
|
5 |
+
import google.generativeai as genai
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from tika import parser
|
8 |
+
from unstructured.partition.pdf import partition_pdf
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
tmp_log = "pdf_processor_log.txt"
|
12 |
+
logging.basicConfig(
|
13 |
+
level=logging.INFO,
|
14 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
15 |
+
handlers=[
|
16 |
+
logging.StreamHandler(),
|
17 |
+
logging.FileHandler(tmp_log)
|
18 |
+
]
|
19 |
+
)
|
20 |
+
logger = logging.getLogger("pdf_processor")
|
21 |
+
|
22 |
+
# Load API key from environment
|
23 |
+
API_KEY = os.getenv("GOOGLE_API_KEY", None)
|
24 |
+
if not API_KEY:
|
25 |
+
logger.warning("GOOGLE_API_KEY not set in environment.")
|
26 |
+
else:
|
27 |
+
genai.configure(api_key=API_KEY)
|
28 |
+
|
29 |
+
# Globals to store state
|
30 |
+
EXTRACTED_TEXT = ""
|
31 |
+
PDF_SECTIONS = []
|
32 |
+
EXTRACTION_METHOD = ""
|
33 |
+
|
34 |
+
# --- Extraction Functions ---
|
35 |
+
def extract_text_with_unstructured(pdf_path):
|
36 |
+
logger.info("Extracting via Unstructured.io...")
|
37 |
+
elements = partition_pdf(filename=pdf_path, extract_images_in_pdf=False)
|
38 |
+
sections, current = [], {"title":"Introduction","content":""}
|
39 |
+
for e in elements:
|
40 |
+
if hasattr(e, "text") and (t := e.text.strip()):
|
41 |
+
if len(t)<80 and (t.isupper() or t.endswith(':') or re.match(r'^[0-9]+\.?\s+', t)):
|
42 |
+
if current["content"]: sections.append(current)
|
43 |
+
current = {"title":t, "content":""}
|
44 |
+
else:
|
45 |
+
current["content"] += t + "\n\n"
|
46 |
+
if current["content"]: sections.append(current)
|
47 |
+
return sections
|
48 |
+
|
49 |
+
def extract_text_with_pypdf(pdf_path):
|
50 |
+
logger.info("Extracting via PyPDF2...")
|
51 |
+
reader = PdfReader(pdf_path)
|
52 |
+
full = ""
|
53 |
+
for i,p in enumerate(reader.pages,1):
|
54 |
+
if (txt := p.extract_text()): full += f"\n\n--- Page {i} ---\n\n{txt}"
|
55 |
+
parts = re.split(r"\n\s*([A-Z][A-Z\s]+:?|[0-9]+\.\s+[A-Z].*?)\s*\n", full)
|
56 |
+
if len(parts)>1:
|
57 |
+
return [{"title":parts[i].strip(),"content":parts[i+1].strip()} for i in range(1,len(parts),2)]
|
58 |
+
# fallback to single section
|
59 |
+
return [{"title":"Document","content":full}]
|
60 |
+
|
61 |
+
def extract_text_with_tika(pdf_path):
|
62 |
+
logger.info("Extracting via Tika...")
|
63 |
+
parsed = parser.from_file(pdf_path)
|
64 |
+
lines = parsed.get("content","").split("\n")
|
65 |
+
sections, current = [], {"title":"Introduction","content":""}
|
66 |
+
for ln in lines:
|
67 |
+
ln = ln.strip()
|
68 |
+
if not ln: continue
|
69 |
+
if len(ln)<80 and (ln.isupper() or ln.endswith(':') or re.match(r'^[0-9]+\.?\s+[A-Z]', ln)):
|
70 |
+
if current["content"]: sections.append(current)
|
71 |
+
current = {"title":ln, "content":""}
|
72 |
+
else:
|
73 |
+
current["content"] += ln + "\n\n"
|
74 |
+
if current["content"]: sections.append(current)
|
75 |
+
return sections
|
76 |
+
|
77 |
+
# --- Gemini API calls ---
|
78 |
+
def generate_greg_brockman_summary(content):
|
79 |
+
model = genai.GenerativeModel('gemini-1.5-pro')
|
80 |
+
prompt = f"""
|
81 |
+
You are an expert document analyst...
|
82 |
+
{content}
|
83 |
+
"""
|
84 |
+
try:
|
85 |
+
resp = model.generate_content(prompt)
|
86 |
+
return resp.text, None
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(e)
|
89 |
+
return None, str(e)
|
90 |
+
|
91 |
+
def answer_question_about_pdf(content, question):
|
92 |
+
model = genai.GenerativeModel('gemini-1.5-pro')
|
93 |
+
prompt = f"""
|
94 |
+
You are a precise document analysis assistant...
|
95 |
+
DOCUMENT CONTENT:
|
96 |
+
{content}
|
97 |
+
QUESTION: {question}
|
98 |
+
"""
|
99 |
+
try:
|
100 |
+
resp = model.generate_content(prompt)
|
101 |
+
return resp.text, None
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(e)
|
104 |
+
return None, str(e)
|
105 |
+
|
106 |
+
# --- Processing & Q&A ---
|
107 |
+
def process_pdf(pdf_file, progress=gr.Progress()):
|
108 |
+
global EXTRACTED_TEXT, PDF_SECTIONS, EXTRACTION_METHOD
|
109 |
+
if not API_KEY:
|
110 |
+
return None, None, "β Set GOOGLE_API_KEY in settings.", ""
|
111 |
+
if pdf_file is None:
|
112 |
+
return None, None, "β No file uploaded.", ""
|
113 |
+
tmp = tempfile.gettempdir()
|
114 |
+
path = os.path.join(tmp, pdf_file.name)
|
115 |
+
with open(path, 'wb') as f: f.write(pdf_file.read())
|
116 |
+
methods = [("unstructured", extract_text_with_unstructured),
|
117 |
+
("pypdf", extract_text_with_pypdf),
|
118 |
+
("tika", extract_text_with_tika)]
|
119 |
+
for name, fn in methods:
|
120 |
+
try:
|
121 |
+
secs = fn(path)
|
122 |
+
if secs:
|
123 |
+
EXTRACTION_METHOD = name
|
124 |
+
PDF_SECTIONS = secs
|
125 |
+
break
|
126 |
+
except:
|
127 |
+
continue
|
128 |
+
if not PDF_SECTIONS:
|
129 |
+
return None, None, "β Extraction failed.", ""
|
130 |
+
combined, struct = "", ""
|
131 |
+
for i,sec in enumerate(PDF_SECTIONS,1):
|
132 |
+
struct += f"{i}. {sec['title']}\n"
|
133 |
+
block = f"## {sec['title']}\n{sec['content']}\n\n"
|
134 |
+
combined += block if len(combined+block)<30000 else f"## {sec['title']}\n[Truncated]\n\n"
|
135 |
+
EXTRACTED_TEXT = combined
|
136 |
+
summary, err = generate_greg_brockman_summary(combined)
|
137 |
+
if err:
|
138 |
+
return None, struct, f"β {err}", combined
|
139 |
+
return summary, struct, "β
Done", f"Used {EXTRACTION_METHOD}, {len(PDF_SECTIONS)} sections"
|
140 |
+
|
141 |
+
def ask_question(question):
|
142 |
+
if not API_KEY: return "β Set GOOGLE_API_KEY."
|
143 |
+
if not EXTRACTED_TEXT: return "β Process a PDF first."
|
144 |
+
if not question.strip(): return "β Enter a question."
|
145 |
+
ans, err = answer_question_about_pdf(EXTRACTED_TEXT, question)
|
146 |
+
return ans if not err else f"β {err}"
|
147 |
+
|
148 |
+
def view_log():
|
149 |
+
try:
|
150 |
+
return open(tmp_log).read()
|
151 |
+
except:
|
152 |
+
return "Error reading log."
|
153 |
+
|
154 |
+
def save_summary(summary):
|
155 |
+
if not summary: return "β No summary."
|
156 |
+
fn = f"summary_{datetime.now():%Y%m%d_%H%M%S}.txt"
|
157 |
+
open(fn, 'w', encoding='utf-8').write(summary)
|
158 |
+
return f"β
Saved to {fn}"
|
159 |
+
|
160 |
+
def save_qa(question, answer):
|
161 |
+
if not question or not answer: return "β Incomplete Q&A."
|
162 |
+
fn = f"qa_{datetime.now():%Y%m%d_%H%M%S}.txt"
|
163 |
+
with open(fn,'w',encoding='utf-8') as f:
|
164 |
+
f.write(f"Q: {question}\n\nA: {answer}")
|
165 |
+
return f"β
Saved to {fn}"
|
166 |
+
|
167 |
+
# --- Gradio UI ---
|
168 |
+
with gr.Blocks(title="PDF Analyzer with Gemini API") as app:
|
169 |
+
gr.Markdown("# π PDF Analyzer with Gemini API")
|
170 |
+
gr.Markdown("Upload a PDF, get a summary, ask questions.")
|
171 |
+
with gr.Tab("PDF Processing"):
|
172 |
+
pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"], type="binary")
|
173 |
+
process_btn = gr.Button("Process PDF")
|
174 |
+
summary_out = gr.Textbox(label="Summary", lines=15)
|
175 |
+
struct_out = gr.Textbox(label="Structure", lines=8)
|
176 |
+
status = gr.Markdown("")
|
177 |
+
log_out = gr.Textbox(label="Log", lines=8)
|
178 |
+
process_btn.click(process_pdf, inputs=[pdf_file],
|
179 |
+
outputs=[summary_out, struct_out, status, log_out])
|
180 |
+
with gr.Tab("Ask Questions"):
|
181 |
+
question = gr.Textbox(label="Question", lines=2)
|
182 |
+
ask_btn = gr.Button("Ask")
|
183 |
+
answer = gr.Textbox(label="Answer", lines=10)
|
184 |
+
ask_btn.click(ask_question, inputs=[question], outputs=[answer])
|
185 |
+
with gr.Tab("System Log"):
|
186 |
+
refresh = gr.Button("Refresh Log")
|
187 |
+
syslog = gr.Textbox(label="System Log", lines=15)
|
188 |
+
refresh.click(view_log, inputs=None, outputs=[syslog])
|
189 |
+
with gr.Row():
|
190 |
+
save_sum_btn = gr.Button("Save Summary")
|
191 |
+
save_sum_status = gr.Markdown("")
|
192 |
+
save_sum_btn.click(save_summary, inputs=[summary_out], outputs=[save_sum_status])
|
193 |
+
with gr.Row():
|
194 |
+
save_qa_btn = gr.Button("Save Q&A")
|
195 |
+
save_qa_status = gr.Markdown("")
|
196 |
+
save_qa_btn.click(save_qa, inputs=[question, answer], outputs=[save_qa_status])
|
197 |
+
|
198 |
+
if __name__ == "__main__":
|
199 |
+
# For Hugging Face Spaces, set `server_name="0.0.0.0"` if needed
|
200 |
+
app.launch()
|