File size: 5,321 Bytes
9406eac
6f14fd9
 
 
 
9406eac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e657d8c
 
 
 
 
 
 
 
9406eac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e657d8c
 
 
 
 
 
 
9406eac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import tempfile
import time
import re
import logging
from datetime import datetime
import gradio as gr
import google.generativeai as genai
from PyPDF2 import PdfReader
from tika import parser

# Configure logging
tmp_log = "pdf_processor_log.txt"
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler(tmp_log)
    ]
)
logger = logging.getLogger("pdf_processor")

# Attempt to import Unstructured.io partitioning
try:
    from unstructured.partition.pdf import partition_pdf
    UNSTRUCTURED_AVAILABLE = True
except ImportError:
    UNSTRUCTURED_AVAILABLE = False
    logger.warning("unstructured.partition.pdf not available; skipping that extraction method")

# Load API key from environment
API_KEY = os.getenv("GOOGLE_API_KEY", None)
if not API_KEY:
    logger.warning("GOOGLE_API_KEY not set in environment.")
else:
    genai.configure(api_key=API_KEY)

# Globals to store state
EXTRACTED_TEXT = ""
PDF_SECTIONS = []
EXTRACTION_METHOD = ""

# --- Extraction Functions ---
def extract_text_with_unstructured(pdf_path):
    logger.info("Extracting via Unstructured.io...")
    elements = partition_pdf(filename=pdf_path, extract_images_in_pdf=False)
    sections, current = [], {"title":"Introduction","content":""}
    for e in elements:
        if hasattr(e, "text") and (t := e.text.strip()):
            if len(t)<80 and (t.isupper() or t.endswith(':') or re.match(r'^[0-9]+\.?\s+', t)):
                if current["content"]: sections.append(current)
                current = {"title":t, "content":""}
            else:
                current["content"] += t + "\n\n"
    if current["content"]: sections.append(current)
    return sections

def extract_text_with_pypdf(pdf_path):
    logger.info("Extracting via PyPDF2...")
    reader = PdfReader(pdf_path)
    full = ""
    for i,p in enumerate(reader.pages,1):
        if (txt := p.extract_text()): full += f"\n\n--- Page {i} ---\n\n{txt}"
    parts = re.split(r"\n\s*([A-Z][A-Z\s]+:?|[0-9]+\.\s+[A-Z].*?)\s*\n", full)
    if len(parts)>1:
        return [{"title":parts[i].strip(),"content":parts[i+1].strip()} for i in range(1,len(parts),2)]
    # fallback to single section
    return [{"title":"Document","content":full}]

def extract_text_with_tika(pdf_path):
    logger.info("Extracting via Tika...")
    parsed = parser.from_file(pdf_path)
    lines = parsed.get("content","").split("\n")
    sections, current = [], {"title":"Introduction","content":""}
    for ln in lines:
        ln = ln.strip()
        if not ln: continue
        if len(ln)<80 and (ln.isupper() or ln.endswith(':') or re.match(r'^[0-9]+\.?\s+[A-Z]', ln)):
            if current["content"]: sections.append(current)
            current = {"title":ln, "content":""}
        else:
            current["content"] += ln + "\n\n"
    if current["content"]: sections.append(current)
    return sections

# --- Gemini API calls ---
def generate_greg_brockman_summary(content):
    model = genai.GenerativeModel('gemini-1.5-pro')
    prompt = f"""
You are an expert document analyst...
{content}
"""
    try:
        resp = model.generate_content(prompt)
        return resp.text, None
    except Exception as e:
        logger.error(e)
        return None, str(e)

def answer_question_about_pdf(content, question):
    model = genai.GenerativeModel('gemini-1.5-pro')
    prompt = f"""
You are a precise document analysis assistant...
DOCUMENT CONTENT:
{content}
QUESTION: {question}
"""
    try:
        resp = model.generate_content(prompt)
        return resp.text, None
    except Exception as e:
        logger.error(e)
        return None, str(e)

# --- Processing & Q&A ---
def process_pdf(pdf_file, progress=gr.Progress()):
    global EXTRACTED_TEXT, PDF_SECTIONS, EXTRACTION_METHOD
    if not API_KEY:
        return None, None, "❌ Set GOOGLE_API_KEY in settings.", ""
    if pdf_file is None:
        return None, None, "❌ No file uploaded.", ""
    tmp = tempfile.gettempdir()
    path = os.path.join(tmp, pdf_file.name)
    with open(path, 'wb') as f: f.write(pdf_file.read())
    methods = []
if UNSTRUCTURED_AVAILABLE:
    methods.append(("unstructured", extract_text_with_unstructured))
methods.extend([
    ("pypdf", extract_text_with_pypdf),
    ("tika", extract_text_with_tika)
])
    with gr.Tab("Ask Questions"):
        question = gr.Textbox(label="Question", lines=2)
        ask_btn = gr.Button("Ask")
        answer = gr.Textbox(label="Answer", lines=10)
        ask_btn.click(ask_question, inputs=[question], outputs=[answer])
    with gr.Tab("System Log"):
        refresh = gr.Button("Refresh Log")
        syslog = gr.Textbox(label="System Log", lines=15)
        refresh.click(view_log, inputs=None, outputs=[syslog])
    with gr.Row():
        save_sum_btn = gr.Button("Save Summary")
        save_sum_status = gr.Markdown("")
        save_sum_btn.click(save_summary, inputs=[summary_out], outputs=[save_sum_status])
    with gr.Row():
        save_qa_btn = gr.Button("Save Q&A")
        save_qa_status = gr.Markdown("")
        save_qa_btn.click(save_qa, inputs=[question, answer], outputs=[save_qa_status])

if __name__ == "__main__":
    # For Hugging Face Spaces, set `server_name="0.0.0.0"` if needed
    app.launch()