api-test / app.py
OjciecTadeusz's picture
Update app.py
6979f2e verified
raw
history blame
3.85 kB
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio
# Initialize FastAPI
app = FastAPI()
# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
response = await query_model(payload)
if isinstance(response, dict) and "error" in response:
return JSONResponse(
status_code=500,
content={"error": response["error"]}
)
response_text = response[0]["generated_text"]
return JSONResponse(
content=format_chat_response(response_text)
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
response = requests.post(API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
def chat_interface(messages):
chat_history = []
for message in messages:
try:
response = generate_response([{"role": "user", "content": message}])
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
except Exception as e:
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return chat_history
# Create Gradio interface
def gradio_app():
#return gr.chat_interface(gr.Chatbot(placeholder="placeholder"), type="messages", value=[])
return gr.ChatInterface(chat_interface, type="messages", value=[])
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, gradio_app(), path="/")
# For running with uvicorn directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)