File size: 3,849 Bytes
37e4010
 
 
 
d6b0a9b
 
 
1fb73a8
cce0194
37e4010
cce0194
 
d6b0a9b
 
 
 
 
 
404e508
d6b0a9b
37e4010
 
 
 
d6b0a9b
37e4010
 
 
 
 
 
 
 
 
 
 
 
cce0194
37e4010
cce0194
d6b0a9b
 
 
 
37e4010
 
cce0194
37e4010
 
 
d6b0a9b
 
 
 
 
 
 
 
 
 
 
404e508
d6b0a9b
37e4010
d6b0a9b
 
 
 
 
404e508
d6b0a9b
37e4010
 
97b4be5
37e4010
cce0194
37e4010
 
 
 
cce0194
1fb73a8
d6b0a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb73a8
d6b0a9b
 
1fb73a8
d6b0a9b
1fb73a8
d98612c
 
 
 
 
8cdb111
 
d98612c
8cdb111
 
d98612c
37e4010
dc3ffec
ceeb878
6979f2e
 
404e508
37e4010
ceeb878
97b4be5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio

# Initialize FastAPI
app = FastAPI()

# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
    "Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
    "Content-Type": "application/json"
}

def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
    return {
        "id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
        "object": "chat.completion",
        "created": int(datetime.datetime.now().timestamp()),
        "model": "Qwen/Qwen2.5-Coder-32B",
        "choices": [{
            "index": 0,
            "message": {
                "role": "assistant",
                "content": response_text
            },
            "finish_reason": "stop"
        }],
        "usage": {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": prompt_tokens + completion_tokens
        }
    }

async def query_model(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
    try:
        data = await request.json()
        messages = data.get("messages", [])
        
        payload = {
            "inputs": {
                "messages": messages
            },
            "parameters": {
                "max_new_tokens": data.get("max_tokens", 2048),
                "temperature": data.get("temperature", 0.7),
                "top_p": data.get("top_p", 0.95),
                "do_sample": True
            }
        }
        
        response = await query_model(payload)
        
        if isinstance(response, dict) and "error" in response:
            return JSONResponse(
                status_code=500,
                content={"error": response["error"]}
            )
        
        response_text = response[0]["generated_text"]
        
        return JSONResponse(
            content=format_chat_response(response_text)
        )
    except Exception as e:
        return JSONResponse(
            status_code=500,
            content={"error": str(e)}
        )

def generate_response(messages):
    payload = {
        "inputs": {
            "messages": messages
        },
        "parameters": {
            "max_new_tokens": 2048,
            "temperature": 0.7,
            "top_p": 0.95,
            "do_sample": True
        }
    }
    
    response = requests.post(API_URL, headers=headers, json=payload)
    result = response.json()
    
    if isinstance(result, dict) and "error" in result:
        return f"Error: {result['error']}"
    
    return result[0]["generated_text"]

def chat_interface(messages):
    chat_history = []
    for message in messages:
        try:
            response = generate_response([{"role": "user", "content": message}])
            chat_history.append({"role": "user", "content": message})
            chat_history.append({"role": "assistant", "content": response})
        except Exception as e:
            chat_history.append({"role": "user", "content": message})
            chat_history.append({"role": "assistant", "content": f"Error: {str(e)}"})
    return chat_history

# Create Gradio interface
def gradio_app():
    #return gr.chat_interface(gr.Chatbot(placeholder="placeholder"), type="messages", value=[])
    return gr.ChatInterface(chat_interface, type="messages", value=[])

# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, gradio_app(), path="/")

# For running with uvicorn directly
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)