Spaces:
Runtime error
Runtime error
File size: 3,849 Bytes
37e4010 d6b0a9b 1fb73a8 cce0194 37e4010 cce0194 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 37e4010 cce0194 37e4010 cce0194 d6b0a9b 37e4010 cce0194 37e4010 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 404e508 d6b0a9b 37e4010 97b4be5 37e4010 cce0194 37e4010 cce0194 1fb73a8 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 d98612c 8cdb111 d98612c 8cdb111 d98612c 37e4010 dc3ffec ceeb878 6979f2e 404e508 37e4010 ceeb878 97b4be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio
# Initialize FastAPI
app = FastAPI()
# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
response = await query_model(payload)
if isinstance(response, dict) and "error" in response:
return JSONResponse(
status_code=500,
content={"error": response["error"]}
)
response_text = response[0]["generated_text"]
return JSONResponse(
content=format_chat_response(response_text)
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
response = requests.post(API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
def chat_interface(messages):
chat_history = []
for message in messages:
try:
response = generate_response([{"role": "user", "content": message}])
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
except Exception as e:
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return chat_history
# Create Gradio interface
def gradio_app():
#return gr.chat_interface(gr.Chatbot(placeholder="placeholder"), type="messages", value=[])
return gr.ChatInterface(chat_interface, type="messages", value=[])
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, gradio_app(), path="/")
# For running with uvicorn directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |