Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import pipeline, AutoTokenizer,
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
@@ -9,18 +9,31 @@ app = FastAPI()
|
|
9 |
MODEL_NAME = "nlptown/bert-base-multilingual-uncased-sentiment"
|
10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
# Initialize
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
class TextInput(BaseModel):
|
18 |
text: str
|
19 |
|
|
|
|
|
|
|
|
|
20 |
@app.post("/analyze-sentiment")
|
21 |
async def analyze_sentiment(input_data: TextInput):
|
22 |
try:
|
23 |
-
result =
|
24 |
return {
|
25 |
"sentiment": result[0]['label'],
|
26 |
"score": float(result[0]['score'])
|
@@ -28,31 +41,41 @@ async def analyze_sentiment(input_data: TextInput):
|
|
28 |
except Exception as e:
|
29 |
raise HTTPException(status_code=500, detail=str(e))
|
30 |
|
31 |
-
# Przykład dla większego modelu (np. GPT-2)
|
32 |
-
MODEL_NAME_LARGE = "gpt2-large"
|
33 |
-
tokenizer_large = AutoTokenizer.from_pretrained(MODEL_NAME_LARGE)
|
34 |
-
model_large = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME_LARGE)
|
35 |
-
|
36 |
-
class GenerationInput(BaseModel):
|
37 |
-
prompt: str
|
38 |
-
max_length: int = 100
|
39 |
-
|
40 |
@app.post("/generate-text")
|
41 |
async def generate_text(input_data: GenerationInput):
|
42 |
try:
|
43 |
-
inputs =
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
inputs["input_ids"],
|
46 |
max_length=input_data.max_length,
|
47 |
num_return_sequences=1,
|
48 |
-
no_repeat_ngram_size=2
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
-
|
51 |
return {"generated_text": generated_text}
|
52 |
except Exception as e:
|
53 |
raise HTTPException(status_code=500, detail=str(e))
|
54 |
|
55 |
-
# Dodanie podstawowego health checka
|
56 |
@app.get("/health")
|
57 |
async def health_check():
|
58 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
|
|
9 |
MODEL_NAME = "nlptown/bert-base-multilingual-uncased-sentiment"
|
10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Initialize sentiment analysis model
|
13 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
sentiment_classifier = pipeline(
|
15 |
+
"sentiment-analysis",
|
16 |
+
model=MODEL_NAME,
|
17 |
+
tokenizer=sentiment_tokenizer,
|
18 |
+
device=DEVICE
|
19 |
+
)
|
20 |
+
|
21 |
+
# Initialize GPT-2 for text generation
|
22 |
+
MODEL_NAME_LARGE = "gpt2-large"
|
23 |
+
generation_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_LARGE)
|
24 |
+
generation_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME_LARGE).to(DEVICE)
|
25 |
|
26 |
class TextInput(BaseModel):
|
27 |
text: str
|
28 |
|
29 |
+
class GenerationInput(BaseModel):
|
30 |
+
prompt: str
|
31 |
+
max_length: int = 100
|
32 |
+
|
33 |
@app.post("/analyze-sentiment")
|
34 |
async def analyze_sentiment(input_data: TextInput):
|
35 |
try:
|
36 |
+
result = sentiment_classifier(input_data.text)
|
37 |
return {
|
38 |
"sentiment": result[0]['label'],
|
39 |
"score": float(result[0]['score'])
|
|
|
41 |
except Exception as e:
|
42 |
raise HTTPException(status_code=500, detail=str(e))
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
@app.post("/generate-text")
|
45 |
async def generate_text(input_data: GenerationInput):
|
46 |
try:
|
47 |
+
inputs = generation_tokenizer(
|
48 |
+
input_data.prompt,
|
49 |
+
return_tensors="pt"
|
50 |
+
).to(DEVICE)
|
51 |
+
|
52 |
+
outputs = generation_model.generate(
|
53 |
inputs["input_ids"],
|
54 |
max_length=input_data.max_length,
|
55 |
num_return_sequences=1,
|
56 |
+
no_repeat_ngram_size=2,
|
57 |
+
pad_token_id=generation_tokenizer.eos_token_id
|
58 |
+
)
|
59 |
+
|
60 |
+
generated_text = generation_tokenizer.decode(
|
61 |
+
outputs[0],
|
62 |
+
skip_special_tokens=True
|
63 |
)
|
64 |
+
|
65 |
return {"generated_text": generated_text}
|
66 |
except Exception as e:
|
67 |
raise HTTPException(status_code=500, detail=str(e))
|
68 |
|
|
|
69 |
@app.get("/health")
|
70 |
async def health_check():
|
71 |
+
return {
|
72 |
+
"status": "healthy",
|
73 |
+
"sentiment_model": MODEL_NAME,
|
74 |
+
"generation_model": MODEL_NAME_LARGE,
|
75 |
+
"device": str(DEVICE)
|
76 |
+
}
|
77 |
+
|
78 |
+
# Dodaj to na końcu pliku
|
79 |
+
if __name__ == "__main__":
|
80 |
+
import uvicorn
|
81 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|