Nymbo's picture
adding comments and logs
9826117 verified
raw
history blame
8.98 kB
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
# Define custom CSS styling for Gradio blocks
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
# Determine whether GPU is available, and set the device accordingly
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
print("GPU is available. Using CUDA.")
else:
power_device = "CPU"
device = "cpu"
print("GPU is not available. Using CPU.")
# Get Hugging Face token from environment variables
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
print(f"Hugging Face token retrieved: {huggingface_token is not None}")
# Download the model from the Hugging Face Hub
print("Downloading model from Hugging Face Hub...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
print(f"Model downloaded to: {model_path}")
# Load ControlNet model
print("Loading ControlNet model...")
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
print("ControlNet model loaded.")
# Load the pipeline using the downloaded model and ControlNet
print("Loading FluxControlNetPipeline...")
pipe = FluxControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)
print("Pipeline loaded.")
# Define constants for seed generation and maximum pixel budget
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
# Function to process input image before upscaling
def process_input(input_image, upscale_factor, **kwargs):
print(f"Processing input image with upscale factor: {upscale_factor}")
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
# Resize the input image if the output image would exceed the pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
)
print("Input image is too large, resizing...")
gr.Info(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
)
# Resize the input image to fit within the maximum pixel budget
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
print(f"Image resized to: {input_image.size}")
# Ensure that the dimensions are multiples of 8 (required by the model)
w, h = input_image.size
w = w - w % 8
h = h - h % 8
print(f"Resizing image to be multiple of 8: ({w}, {h})")
return input_image.resize((w, h)), w_original, h_original, was_resized
# Define inference function with GPU duration hint
@spaces.GPU(duration=42)
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
print(f"Starting inference with seed: {seed}, randomize_seed: {randomize_seed}")
# Randomize the seed if the option is selected
if randomize_seed:
seed = random.randint(0, MAX_SEED)
print(f"Randomized seed: {seed}")
true_input_image = input_image
# Process the input image for upscaling
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
print(f"Processed input image. Original size: ({w_original}, {h_original}), Processed size: {input_image.size}")
# Rescale the input image by the upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
print(f"Control image resized to: {control_image.size}")
# Create a random number generator with the provided seed
generator = torch.Generator().manual_seed(seed)
gr.Info("Upscaling image...")
print("Running the pipeline to generate output image...")
# Run the pipeline to generate the output image
image = pipe(
prompt="", # No specific prompt is used here
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5, # Guidance scale for image generation
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
print("Image generation completed.")
# If the image was resized during processing, resize it back to the original target size
if was_resized:
gr.Info(
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
)
print(f"Resizing output image to original target size: ({w_original * upscale_factor}, {h_original * upscale_factor})")
# Resize the generated image to the desired output size
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
print(f"Final output image size: {image.size}")
image.save("output.jpg")
print("Output image saved as 'output.jpg'")
# Return the original input image, generated image, and seed value
return [true_input_image, image, seed]
# Create the Gradio interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
gr.HTML("<center><h1>FLUX.1-Dev Upscaler</h1></center>")
# Define the button to start the upscaling process
with gr.Row():
run_button = gr.Button(value="Run")
# Define the input elements for the upscaling parameters
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil") # Input image
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps", # Slider to set the number of inference steps
minimum=8,
maximum=50,
step=1,
value=28,
)
upscale_factor = gr.Slider(
label="Upscale Factor", # Slider to set the upscale factor
minimum=1,
maximum=4,
step=1,
value=4,
)
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale", # Slider for controlnet conditioning scale
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.6,
)
seed = gr.Slider(
label="Seed", # Slider to set the random seed
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # Checkbox to randomize the seed
# Define the output element to display the input and output images
with gr.Row():
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
# Define examples for users to try out
examples = gr.Examples(
examples=[
[42, False, "examples/image_2.jpg", 28, 4, 0.6],
[42, False, "examples/image_4.jpg", 28, 4, 0.6],
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer, # Function to call for the examples
outputs=result,
cache_examples="lazy",
)
# Define the action for the run button
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
)
# Launch the Gradio app
# The queue is used to handle multiple requests, sharing is disabled for privacy
print("Launching Gradio app...")
demo.queue().launch(share=False, show_api=False)