Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,981 Bytes
c0490dd da90319 c0490dd e5efe2c c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 e5efe2c 9826117 e5efe2c 9826117 e5efe2c 9826117 e5efe2c 9826117 e5efe2c 9826117 c0490dd 9826117 c0490dd e5efe2c c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd bfd8827 9826117 c0490dd bc47113 c0490dd 9826117 bfd8827 6e8bc8b bfd8827 9826117 c0490dd bc47113 c0490dd bfd8827 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd bfd8827 c0490dd 9826117 c0490dd bc47113 c0490dd 9826117 c0490dd 9826117 bc47113 9826117 bfd8827 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 6e8bc8b 9826117 c0490dd 9826117 c0490dd bc47113 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 bfd8827 6e8bc8b bfd8827 9826117 bfd8827 9826117 c0490dd 9826117 c0490dd 9826117 bc47113 c0490dd 9826117 5dc1993 6c0b559 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd bc47113 9826117 bc47113 c0490dd 9826117 c0490dd 9826117 c0490dd 9826117 c0490dd 6ac2fca c0490dd 9826117 c0490dd f469b17 c0490dd ff771b6 9826117 ff771b6 0e1961e c0490dd 9826117 c0490dd bc47113 c0490dd 9826117 6c0b559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
# Define custom CSS styling for Gradio blocks
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
# Determine whether GPU is available, and set the device accordingly
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
print("GPU is available. Using CUDA.")
else:
power_device = "CPU"
device = "cpu"
print("GPU is not available. Using CPU.")
# Get Hugging Face token from environment variables
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
print(f"Hugging Face token retrieved: {huggingface_token is not None}")
# Download the model from the Hugging Face Hub
print("Downloading model from Hugging Face Hub...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
print(f"Model downloaded to: {model_path}")
# Load ControlNet model
print("Loading ControlNet model...")
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
print("ControlNet model loaded.")
# Load the pipeline using the downloaded model and ControlNet
print("Loading FluxControlNetPipeline...")
pipe = FluxControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)
print("Pipeline loaded.")
# Define constants for seed generation and maximum pixel budget
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
# Function to process input image before upscaling
def process_input(input_image, upscale_factor, **kwargs):
print(f"Processing input image with upscale factor: {upscale_factor}")
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
# Resize the input image if the output image would exceed the pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
)
print("Input image is too large, resizing...")
gr.Info(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
)
# Resize the input image to fit within the maximum pixel budget
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
print(f"Image resized to: {input_image.size}")
# Ensure that the dimensions are multiples of 8 (required by the model)
w, h = input_image.size
w = w - w % 8
h = h - h % 8
print(f"Resizing image to be multiple of 8: ({w}, {h})")
return input_image.resize((w, h)), w_original, h_original, was_resized
# Define inference function with GPU duration hint
@spaces.GPU(duration=42)
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
progress=gr.Progress(track_tqdm=True),
):
print(f"Starting inference with seed: {seed}, randomize_seed: {randomize_seed}")
# Randomize the seed if the option is selected
if randomize_seed:
seed = random.randint(0, MAX_SEED)
print(f"Randomized seed: {seed}")
true_input_image = input_image
# Process the input image for upscaling
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
print(f"Processed input image. Original size: ({w_original}, {h_original}), Processed size: {input_image.size}")
# Rescale the input image by the upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
print(f"Control image resized to: {control_image.size}")
# Create a random number generator with the provided seed
generator = torch.Generator().manual_seed(seed)
gr.Info("Upscaling image...")
print("Running the pipeline to generate output image...")
# Run the pipeline to generate the output image
image = pipe(
prompt="", # No specific prompt is used here
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5, # Guidance scale for image generation
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
print("Image generation completed.")
# If the image was resized during processing, resize it back to the original target size
if was_resized:
gr.Info(
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
)
print(f"Resizing output image to original target size: ({w_original * upscale_factor}, {h_original * upscale_factor})")
# Resize the generated image to the desired output size
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
print(f"Final output image size: {image.size}")
image.save("output.jpg")
print("Output image saved as 'output.jpg'")
# Return the original input image, generated image, and seed value
return [true_input_image, image, seed]
# Create the Gradio interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
gr.HTML("<center><h1>FLUX.1-Dev Upscaler</h1></center>")
# Define the button to start the upscaling process
with gr.Row():
run_button = gr.Button(value="Run")
# Define the input elements for the upscaling parameters
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil") # Input image
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps", # Slider to set the number of inference steps
minimum=8,
maximum=50,
step=1,
value=28,
)
upscale_factor = gr.Slider(
label="Upscale Factor", # Slider to set the upscale factor
minimum=1,
maximum=4,
step=1,
value=4,
)
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale", # Slider for controlnet conditioning scale
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.6,
)
seed = gr.Slider(
label="Seed", # Slider to set the random seed
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # Checkbox to randomize the seed
# Define the output element to display the input and output images
with gr.Row():
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
# Define examples for users to try out
examples = gr.Examples(
examples=[
[42, False, "examples/image_2.jpg", 28, 4, 0.6],
[42, False, "examples/image_4.jpg", 28, 4, 0.6],
],
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
fn=infer, # Function to call for the examples
outputs=result,
cache_examples="lazy",
)
# Define the action for the run button
gr.on(
[run_button.click],
fn=infer,
inputs=[
seed,
randomize_seed,
input_im,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
],
outputs=result,
show_api=False,
)
# Launch the Gradio app
# The queue is used to handle multiple requests, sharing is disabled for privacy
print("Launching Gradio app...")
demo.queue().launch(share=False, show_api=False) |