Spaces:
Runtime error
Runtime error
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
import gradio as gr | |
import torch | |
from concurrent.futures import ThreadPoolExecutor | |
from threading import Lock | |
# Global cache settings and lock for thread-safety | |
CACHE_SIZE = 100 | |
prediction_cache = {} | |
cache_lock = Lock() | |
# Function to load models with 8-bit quantization | |
def load_quantized_model(model_name): | |
try: | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, load_in_8bit=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
device = 0 if torch.cuda.is_available() else -1 | |
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) | |
print(f"Loaded model: {model_name}") | |
return pipe | |
except Exception as e: | |
print(f"Error loading model '{model_name}': {e}") | |
raise e | |
# Load both models concurrently at startup | |
with ThreadPoolExecutor() as executor: | |
sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment") | |
emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion") | |
sentiment_pipeline = sentiment_future.result() | |
emotion_pipeline = emotion_future.result() | |
def analyze_text(text): | |
# Check cache first (using lock for thread-safety) | |
with cache_lock: | |
if text in prediction_cache: | |
return prediction_cache[text] | |
try: | |
# Execute both model inferences in parallel | |
with ThreadPoolExecutor() as executor: | |
sentiment_future = executor.submit(sentiment_pipeline, text) | |
emotion_future = executor.submit(emotion_pipeline, text) | |
sentiment_result = sentiment_future.result()[0] | |
emotion_result = emotion_future.result()[0] | |
# Prepare a clear, rounded output | |
result = { | |
"Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)}, | |
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)} | |
} | |
except Exception as e: | |
result = {"error": str(e)} | |
# Update cache with lock protection | |
with cache_lock: | |
if len(prediction_cache) >= CACHE_SIZE: | |
prediction_cache.pop(next(iter(prediction_cache))) | |
prediction_cache[text] = result | |
return result | |
# Gradio interface: using gr.JSON to display structured output | |
demo = gr.Interface( | |
fn=analyze_text, | |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"), | |
outputs=gr.JSON(label="Analysis Results"), | |
title="π Fast Sentiment & Emotion Analysis", | |
description="An optimized application using 8-bit quantized models and parallel processing for fast inference.", | |
examples=[ | |
["I'm thrilled to start this new adventure!"], | |
["This situation is making me really frustrated."], | |
["I feel so heartbroken and lost."] | |
], | |
theme="soft", | |
allow_flagging="never" | |
) | |
# Warm up the models with a sample input to reduce first-call latency | |
_ = analyze_text("Warming up models...") | |
if __name__ == "__main__": | |
demo.launch() | |