Nitin00043's picture
Update app.py
191e2cd verified
raw
history blame
3.18 kB
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import gradio as gr
import torch
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
# Global cache settings and lock for thread-safety
CACHE_SIZE = 100
prediction_cache = {}
cache_lock = Lock()
# Function to load models with 8-bit quantization
def load_quantized_model(model_name):
try:
model = AutoModelForSequenceClassification.from_pretrained(model_name, load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = 0 if torch.cuda.is_available() else -1
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
print(f"Loaded model: {model_name}")
return pipe
except Exception as e:
print(f"Error loading model '{model_name}': {e}")
raise e
# Load both models concurrently at startup
with ThreadPoolExecutor() as executor:
sentiment_future = executor.submit(load_quantized_model, "cardiffnlp/twitter-roberta-base-sentiment")
emotion_future = executor.submit(load_quantized_model, "bhadresh-savani/bert-base-uncased-emotion")
sentiment_pipeline = sentiment_future.result()
emotion_pipeline = emotion_future.result()
def analyze_text(text):
# Check cache first (using lock for thread-safety)
with cache_lock:
if text in prediction_cache:
return prediction_cache[text]
try:
# Execute both model inferences in parallel
with ThreadPoolExecutor() as executor:
sentiment_future = executor.submit(sentiment_pipeline, text)
emotion_future = executor.submit(emotion_pipeline, text)
sentiment_result = sentiment_future.result()[0]
emotion_result = emotion_future.result()[0]
# Prepare a clear, rounded output
result = {
"Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)},
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
}
except Exception as e:
result = {"error": str(e)}
# Update cache with lock protection
with cache_lock:
if len(prediction_cache) >= CACHE_SIZE:
prediction_cache.pop(next(iter(prediction_cache)))
prediction_cache[text] = result
return result
# Gradio interface: using gr.JSON to display structured output
demo = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
outputs=gr.JSON(label="Analysis Results"),
title="πŸš€ Fast Sentiment & Emotion Analysis",
description="An optimized application using 8-bit quantized models and parallel processing for fast inference.",
examples=[
["I'm thrilled to start this new adventure!"],
["This situation is making me really frustrated."],
["I feel so heartbroken and lost."]
],
theme="soft",
allow_flagging="never"
)
# Warm up the models with a sample input to reduce first-call latency
_ = analyze_text("Warming up models...")
if __name__ == "__main__":
demo.launch()