Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM | |
from janus.models import MultiModalityCausalLM, VLChatProcessor | |
from janus.utils.io import load_pil_images | |
from PIL import Image | |
import numpy as np | |
import os | |
import time | |
import re | |
from Upsample import RealESRGAN | |
import spaces # Import spaces for ZeroGPU compatibility | |
# Load model and processor | |
model_path = "deepseek-ai/Janus-Pro-7B" | |
config = AutoConfig.from_pretrained(model_path) | |
language_config = config.language_config | |
language_config._attn_implementation = 'eager' | |
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, language_config=language_config, trust_remote_code=True) | |
if torch.cuda.is_available(): | |
vl_gpt = vl_gpt.to(torch.bfloat16).cuda() | |
else: | |
vl_gpt = vl_gpt.to(torch.float16) | |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) | |
tokenizer = vl_chat_processor.tokenizer | |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# SR model | |
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2) | |
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False) | |
# Patterns for detecting image generation requests | |
GENERATION_PATTERNS = [ | |
r"generate (.+)", | |
r"create (.+)", | |
r"draw (.+)", | |
r"make (.+)", | |
r"show (.+)", | |
r"visualize (.+)", | |
r"imagine (.+)", | |
r"picture (.+)", | |
] | |
def is_generation_request(message): | |
"""Determine if a message is requesting image generation""" | |
message = message.lower().strip() | |
# Check if message explicitly mentions image generation | |
for pattern in GENERATION_PATTERNS: | |
match = re.match(pattern, message, re.IGNORECASE) | |
if match: | |
return True, match.group(1) | |
# Check for specific keywords suggesting image generation | |
image_keywords = ["image", "picture", "photo", "artwork", "illustration", "painting", "drawing"] | |
generation_verbs = ["generate", "create", "make", "produce", "show me", "draw"] | |
for verb in generation_verbs: | |
for keyword in image_keywords: | |
if f"{verb} {keyword}" in message or f"{verb} an {keyword}" in message or f"{verb} a {keyword}" in message: | |
# Extract the prompt (everything after the keyword) | |
pattern = f"{verb}\\s+(?:an?\\s+)?{keyword}\\s+(?:of|showing|depicting|with)?\\s*(.*)" | |
match = re.search(pattern, message, re.IGNORECASE) | |
if match and match.group(1): | |
return True, match.group(1) | |
else: | |
# If we can't extract a specific prompt, use the whole message | |
return True, message | |
return False, None | |
# Unified chat function that handles both image understanding and generation | |
def unified_chat(image, message, chat_history, seed, top_p, temperature, cfg_weight, t2i_temperature, progress=gr.Progress(track_tqdm=True)): | |
# Clear CUDA cache before generating | |
torch.cuda.empty_cache() | |
# Check if this is an image generation request | |
is_gen_request, extracted_prompt = is_generation_request(message) | |
if is_gen_request: | |
# Extract the prompt directly | |
context_prompt = extracted_prompt | |
# Generate images with full conversation history | |
generated_images = generate_image(prompt=context_prompt, conversation_history=chat_history, # Pass the full chat history | |
seed=seed, guidance=cfg_weight, t2i_temperature=t2i_temperature) | |
# Create a response that includes the generated images | |
response = f"I've generated the following images based on: '{extracted_prompt}'" | |
# Add the images to the chat as the bot's response | |
chat_history.append((message, response)) | |
# Return the message, updated history, maintained image context, and generated images | |
return "", chat_history, image, generated_images | |
# Rest of the function remains the same... | |
# set seed | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
torch.cuda.manual_seed(seed) | |
# Process the conversation history and add current message | |
conversation = [] | |
# Check if we have existing history | |
if chat_history: | |
# Add previous conversation turns | |
for user_msg, assistant_msg in chat_history: | |
conversation.append({ | |
"role": "<|User|>", | |
"content": user_msg, | |
"images": [], # No images for previous turns | |
}) | |
conversation.append({ | |
"role": "<|Assistant|>", | |
"content": assistant_msg, | |
}) | |
# Add the current user message with image (if provided) | |
user_content = message | |
images_list = [] | |
# Only include image placeholder if image is provided or this is the first message | |
if image is not None: | |
user_content = f"<image_placeholder>\n{message}" | |
images_list = [image] | |
conversation.append({ | |
"role": "<|User|>", | |
"content": user_content, | |
"images": images_list, | |
}) | |
conversation.append({"role": "<|Assistant|>", "content": ""}) | |
# Process images (if any) | |
pil_images = [] | |
if image is not None: | |
pil_images = [Image.fromarray(image)] | |
prepare_inputs = vl_chat_processor(conversations=conversation, images=pil_images, force_batchify=True | |
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) | |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) | |
outputs = vl_gpt.language_model.generate(inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, | |
pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, temperature=temperature, top_p=top_p, | |
do_sample=False if temperature == 0 else True, use_cache=True,) | |
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) | |
# Update chat history | |
chat_history.append((message, answer)) | |
# Keep the last uploaded image in context | |
return "", chat_history, image, None | |
def generate(input_ids, width, height, temperature: float = 1, parallel_size: int = 5, cfg_weight: float = 5, | |
image_token_num_per_image: int = 576, patch_size: int = 16, progress=gr.Progress(track_tqdm=True)): | |
# Clear CUDA cache before generating | |
torch.cuda.empty_cache() | |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
for i in range(parallel_size * 2): | |
tokens[i, :] = input_ids | |
if i % 2 != 0: | |
tokens[i, 1:-1] = vl_chat_processor.pad_id | |
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) | |
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) | |
pkv = None | |
for i in range(image_token_num_per_image): | |
with torch.no_grad(): | |
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) | |
pkv = outputs.past_key_values | |
hidden_states = outputs.last_hidden_state | |
logits = vl_gpt.gen_head(hidden_states[:, -1, :]) | |
logit_cond = logits[0::2, :] | |
logit_uncond = logits[1::2, :] | |
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
probs = torch.softmax(logits / temperature, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) | |
inputs_embeds = img_embeds.unsqueeze(dim=1) | |
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), | |
shape=[parallel_size, 8, width // patch_size, height // patch_size]) | |
return generated_tokens.to(dtype=torch.int), patches | |
def unpack(dec, width, height, parallel_size=5): | |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) | |
visual_img[:, :, :] = dec | |
return visual_img | |
# Specify a duration to avoid timeout | |
def generate_image(prompt, conversation_history=None, # Add conversation history parameter | |
seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress(track_tqdm=True)): | |
# Clear CUDA cache and avoid tracking gradients | |
torch.cuda.empty_cache() | |
# Set the seed for reproducible results | |
if seed is not None: | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
np.random.seed(seed) | |
width = 384 | |
height = 384 | |
parallel_size = 1 | |
# Prepare a richer context-aware prompt | |
full_prompt = prompt | |
# Add conversation history context if available | |
if conversation_history and len(conversation_history) > 0: | |
# Build a context string from the last few conversation turns | |
# Limit to last 3-5 turns to keep prompt manageable | |
recent_turns = conversation_history[-5:] if len(conversation_history) > 5 else conversation_history | |
context_parts = [] | |
for user_msg, assistant_msg in recent_turns: | |
if user_msg and user_msg.strip(): | |
context_parts.append(f"User: {user_msg}") | |
if assistant_msg and assistant_msg.strip(): | |
context_parts.append(f"Assistant: {assistant_msg}") | |
conversation_context = "\n".join(context_parts) | |
# Combine conversation context with the prompt | |
full_prompt = f"Based on this conversation:\n{conversation_context}\n\nGenerate: {prompt}" | |
with torch.no_grad(): | |
messages = [{'role': '<|User|>', 'content': full_prompt}, | |
{'role': '<|Assistant|>', 'content': ''}] | |
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages, | |
sft_format=vl_chat_processor.sft_format, system_prompt='') | |
text = text + vl_chat_processor.image_start_tag | |
input_ids = torch.LongTensor(tokenizer.encode(text)) | |
output, patches = generate(input_ids, | |
width // 16 * 16, | |
height // 16 * 16, | |
cfg_weight=guidance, | |
parallel_size=parallel_size, | |
temperature=t2i_temperature) | |
images = unpack(patches, | |
width // 16 * 16, | |
height // 16 * 16, | |
parallel_size=parallel_size) | |
stime = time.time() | |
ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)] | |
print(f'upsample time: {time.time() - stime}') | |
return ret_images | |
def image_upsample(img: Image.Image) -> Image.Image: | |
if img is None: | |
raise Exception("Image not uploaded") | |
width, height = img.size | |
if width >= 4096 or height >= 4096: | |
raise Exception("The image is too large.") | |
global sr_model | |
result = sr_model.predict(img.convert('RGB')) | |
return result | |
# Helper function to add uploaded image to the chat context | |
def add_image_to_chat(image, chat_history): | |
return image, chat_history | |
# Helper function to clear chat history but maintain the image | |
def clear_chat(image): | |
return [], image, None | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Janus Pro 7B - Unified Chat Interface with Context Retention") | |
gr.Markdown(""" | |
## Description | |
This space showcases Janus Pro 7B, a unified multimodal AI model capable of both image understanding and text-to-image generation within a seamless conversational experience. | |
Unlike traditional models that treat these tasks separately, Janus Pro Chat maintains the same context across interactions, allowing for a more coherent and dynamic dialogue. | |
You can chat with it about images, generate new ones from text prompts, and receive responses that are aware of the ongoing conversation—enhancing both usability and realism in multimodal AI. | |
""") | |
gr.Markdown(""" | |
### Tips: | |
1. Upload an image to discuss it | |
2. Type commands like "generate [description]" to create images | |
3. Continue chatting about uploaded or generated images | |
4. Use natural language like "show me a sunset" or "create a portrait" | |
""") | |
# State variables to maintain context | |
chat_history = gr.State([]) | |
current_image = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(label="Upload Image (optional)") | |
upload_button = gr.Button("Add Image to Chat") | |
with gr.Accordion("Chat Options", open=False): | |
und_seed_input = gr.Number(label="Seed", precision=0, value=42) | |
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p") | |
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature") | |
with gr.Accordion("Image Generation Options", open=False): | |
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight") | |
t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature") | |
clear_button = gr.Button("Clear Chat") | |
with gr.Column(scale=2): | |
chat_interface = gr.Chatbot(label="Chat History", height=500) | |
message_input = gr.Textbox( | |
label="Your message", | |
placeholder="Ask about an image, continue chatting, or generate new images by typing 'generate [description]'", | |
lines=2 | |
) | |
chat_button = gr.Button("Send") | |
generated_images = gr.Gallery(label="Generated Images", visible=True, columns=2, rows=2) | |
# Chat interface interactions | |
upload_button.click(add_image_to_chat, inputs=[image_input, chat_history], outputs=[current_image, chat_history]) | |
chat_button.click( | |
unified_chat, | |
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input], | |
outputs=[message_input, chat_interface, current_image, generated_images] | |
) | |
# Also trigger on Enter key | |
message_input.submit( | |
unified_chat, | |
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input], | |
outputs=[message_input, chat_interface, current_image, generated_images] | |
) | |
clear_button.click( | |
clear_chat, | |
inputs=[current_image], | |
outputs=[chat_interface, current_image, generated_images] | |
) | |
# Examples for the unified interface | |
examples = gr.Examples( | |
label="Example queries", | |
examples=[ | |
["What's in this image?"], | |
["Generate a cute kitten with big eyes"], | |
["Show me a mountain landscape at sunset"], | |
["Can you explain what's happening in this picture?"], | |
["Create an astronaut riding a horse"], | |
["Generate a futuristic cityscape with flying cars"], | |
], | |
inputs=message_input, | |
) | |
demo.launch(share=True) |