File size: 16,225 Bytes
e1e0034
e200100
61e1955
 
 
 
 
 
 
 
 
6c390aa
61e1955
 
e200100
2d9bb6e
61e1955
 
 
 
 
418b14d
61e1955
 
 
 
e200100
61e1955
 
 
e200100
61e1955
 
 
 
6c390aa
5c3cb3b
 
 
 
 
 
 
 
 
 
6c390aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e1955
 
6c390aa
 
61e1955
 
 
6c390aa
 
 
 
1745cd1
6c390aa
 
1745cd1
 
 
6c390aa
 
 
 
 
 
 
 
 
 
1745cd1
61e1955
 
 
 
e200100
2d9bb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7afe207
1745cd1
 
61e1955
 
 
b3020f6
 
 
 
61e1955
 
2d9bb6e
 
 
 
 
6c390aa
 
 
 
5c3cb3b
2d9bb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3cb3b
2d9bb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c390aa
2d9bb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3cb3b
1745cd1
 
b3020f6
 
 
 
 
 
 
 
 
 
2d9bb6e
1745cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3020f6
1745cd1
b3020f6
 
1745cd1
b3020f6
2d9bb6e
b3020f6
1745cd1
 
 
 
 
 
 
 
 
 
b3020f6
 
 
 
 
55736f4
2d9bb6e
 
 
 
 
 
 
 
 
6c390aa
2d9bb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
6c390aa
2d9bb6e
5c3cb3b
e0402e9
61e1955
28bb0de
10bc570
 
 
 
 
 
 
5c3cb3b
 
 
 
 
 
 
2d9bb6e
6c390aa
 
 
2d9bb6e
6c390aa
 
 
 
 
 
 
 
 
 
 
2d9bb6e
5c3cb3b
6c390aa
 
 
 
 
 
 
 
 
 
 
 
 
2d9bb6e
 
6c390aa
2d9bb6e
 
6c390aa
 
 
 
 
 
 
 
 
 
2d9bb6e
 
 
 
 
6c390aa
2d9bb6e
 
6c390aa
 
 
 
 
 
 
 
 
 
 
 
2d9bb6e
7afe207
61e1955
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import spaces
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image

import numpy as np
import os
import time
import re
from Upsample import RealESRGAN
import spaces  # Import spaces for ZeroGPU compatibility


# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, language_config=language_config, trust_remote_code=True)
if torch.cuda.is_available():
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
    vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

# SR model
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)

# Patterns for detecting image generation requests
GENERATION_PATTERNS = [
    r"generate (.+)",
    r"create (.+)",
    r"draw (.+)",
    r"make (.+)",
    r"show (.+)",
    r"visualize (.+)",
    r"imagine (.+)",
    r"picture (.+)",
]

def is_generation_request(message):
    """Determine if a message is requesting image generation"""
    message = message.lower().strip()
    
    # Check if message explicitly mentions image generation
    for pattern in GENERATION_PATTERNS:
        match = re.match(pattern, message, re.IGNORECASE)
        if match:
            return True, match.group(1)
    
    # Check for specific keywords suggesting image generation
    image_keywords = ["image", "picture", "photo", "artwork", "illustration", "painting", "drawing"]
    generation_verbs = ["generate", "create", "make", "produce", "show me", "draw"]
    
    for verb in generation_verbs:
        for keyword in image_keywords:
            if f"{verb} {keyword}" in message or f"{verb} an {keyword}" in message or f"{verb} a {keyword}" in message:
                # Extract the prompt (everything after the keyword)
                pattern = f"{verb}\\s+(?:an?\\s+)?{keyword}\\s+(?:of|showing|depicting|with)?\\s*(.*)"
                match = re.search(pattern, message, re.IGNORECASE)
                if match and match.group(1):
                    return True, match.group(1)
                else:
                    # If we can't extract a specific prompt, use the whole message
                    return True, message
    
    return False, None


@torch.inference_mode()
@spaces.GPU(duration=120) 
# Unified chat function that handles both image understanding and generation
def unified_chat(image, message, chat_history, seed, top_p, temperature, cfg_weight, t2i_temperature, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    # Check if this is an image generation request
    is_gen_request, extracted_prompt = is_generation_request(message)
    
    if is_gen_request:
        # Extract the prompt directly
        context_prompt = extracted_prompt
        
        # Generate images with full conversation history
        generated_images = generate_image(prompt=context_prompt, conversation_history=chat_history,  # Pass the full chat history
                                          seed=seed, guidance=cfg_weight, t2i_temperature=t2i_temperature)
        
        # Create a response that includes the generated images
        response = f"I've generated the following images based on: '{extracted_prompt}'"
        
        # Add the images to the chat as the bot's response
        chat_history.append((message, response))
        
        # Return the message, updated history, maintained image context, and generated images
        return "", chat_history, image, generated_images
    
    # Rest of the function remains the same...
    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)
    
    # Process the conversation history and add current message
    conversation = []
    
    # Check if we have existing history
    if chat_history:
        # Add previous conversation turns
        for user_msg, assistant_msg in chat_history:
            conversation.append({
                "role": "<|User|>",
                "content": user_msg,
                "images": [],  # No images for previous turns
            })
            conversation.append({
                "role": "<|Assistant|>", 
                "content": assistant_msg,
            })
    
    # Add the current user message with image (if provided)
    user_content = message
    images_list = []
    
    # Only include image placeholder if image is provided or this is the first message
    if image is not None:
        user_content = f"<image_placeholder>\n{message}"
        images_list = [image]
        
    conversation.append({
        "role": "<|User|>",
        "content": user_content,
        "images": images_list,
    })
    conversation.append({"role": "<|Assistant|>", "content": ""})
    
    # Process images (if any)
    pil_images = []
    if image is not None:
        pil_images = [Image.fromarray(image)]
    
    prepare_inputs = vl_chat_processor(conversations=conversation, images=pil_images, force_batchify=True
                                      ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
    
    outputs = vl_gpt.language_model.generate(inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask,
                                             pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id,
                                             eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, temperature=temperature, top_p=top_p,
                                             do_sample=False if temperature == 0 else True, use_cache=True,)
    
    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    
    # Update chat history
    chat_history.append((message, answer))
    
    # Keep the last uploaded image in context
    return "", chat_history, image, None


def generate(input_ids, width, height, temperature: float = 1, parallel_size: int = 5, cfg_weight: float = 5,
             image_token_num_per_image: int = 576, patch_size: int = 16, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)

    pkv = None
    for i in range(image_token_num_per_image):
        with torch.no_grad():
            outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
            pkv = outputs.past_key_values
            hidden_states = outputs.last_hidden_state
            logits = vl_gpt.gen_head(hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
            probs = torch.softmax(logits / temperature, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)

            img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
            inputs_embeds = img_embeds.unsqueeze(dim=1)

    patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
                                                  shape=[parallel_size, 8, width // patch_size, height // patch_size])

    return generated_tokens.to(dtype=torch.int), patches

def unpack(dec, width, height, parallel_size=5):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    return visual_img



@torch.inference_mode()
@spaces.GPU(duration=120)  # Specify a duration to avoid timeout
def generate_image(prompt, conversation_history=None,  # Add conversation history parameter
                   seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache and avoid tracking gradients
    torch.cuda.empty_cache()
    # Set the seed for reproducible results
    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        np.random.seed(seed)
    width = 384
    height = 384
    parallel_size = 1
    
    # Prepare a richer context-aware prompt
    full_prompt = prompt
    
    # Add conversation history context if available
    if conversation_history and len(conversation_history) > 0:
        # Build a context string from the last few conversation turns
        # Limit to last 3-5 turns to keep prompt manageable
        recent_turns = conversation_history[-5:] if len(conversation_history) > 5 else conversation_history
        
        context_parts = []
        for user_msg, assistant_msg in recent_turns:
            if user_msg and user_msg.strip():
                context_parts.append(f"User: {user_msg}")
            if assistant_msg and assistant_msg.strip():
                context_parts.append(f"Assistant: {assistant_msg}")
        
        conversation_context = "\n".join(context_parts)
        
        # Combine conversation context with the prompt
        full_prompt = f"Based on this conversation:\n{conversation_context}\n\nGenerate: {prompt}"
    
    with torch.no_grad():
        messages = [{'role': '<|User|>', 'content': full_prompt},
                    {'role': '<|Assistant|>', 'content': ''}]
        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
                                                                   sft_format=vl_chat_processor.sft_format, system_prompt='')
        text = text + vl_chat_processor.image_start_tag
        
        input_ids = torch.LongTensor(tokenizer.encode(text))
        output, patches = generate(input_ids,
                                   width // 16 * 16,
                                   height // 16 * 16,
                                   cfg_weight=guidance,
                                   parallel_size=parallel_size,
                                   temperature=t2i_temperature)
        images = unpack(patches,
                        width // 16 * 16,
                        height // 16 * 16,
                        parallel_size=parallel_size)

        stime = time.time()
        ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
        print(f'upsample time: {time.time() - stime}')
        return ret_images



@spaces.GPU(duration=60)
def image_upsample(img: Image.Image) -> Image.Image:
    if img is None:
        raise Exception("Image not uploaded")
    
    width, height = img.size
    
    if width >= 4096 or height >= 4096:
        raise Exception("The image is too large.")

    global sr_model
    result = sr_model.predict(img.convert('RGB'))
    return result


# Helper function to add uploaded image to the chat context
def add_image_to_chat(image, chat_history):
    return image, chat_history


# Helper function to clear chat history but maintain the image
def clear_chat(image):
    return [], image, None

    

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Janus Pro 7B - Unified Chat Interface with Context Retention")
    gr.Markdown("""
                ## Description
                This space showcases Janus Pro 7B, a unified multimodal AI model capable of both image understanding and text-to-image generation within a seamless conversational experience.
                Unlike traditional models that treat these tasks separately, Janus Pro Chat maintains the same context across interactions, allowing for a more coherent and dynamic dialogue.
                You can chat with it about images, generate new ones from text prompts, and receive responses that are aware of the ongoing conversation—enhancing both usability and realism in multimodal AI.
                """)
    gr.Markdown("""
                ### Tips:
                1. Upload an image to discuss it
                2. Type commands like "generate [description]" to create images
                3. Continue chatting about uploaded or generated images
                4. Use natural language like "show me a sunset" or "create a portrait"
                """)
    
    # State variables to maintain context
    chat_history = gr.State([])
    current_image = gr.State(None)
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(label="Upload Image (optional)")
            upload_button = gr.Button("Add Image to Chat")
            
            with gr.Accordion("Chat Options", open=False):
                und_seed_input = gr.Number(label="Seed", precision=0, value=42)
                top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
                temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
            
            with gr.Accordion("Image Generation Options", open=False):
                cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
                t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
            
            clear_button = gr.Button("Clear Chat")
            
        
        with gr.Column(scale=2):
            chat_interface = gr.Chatbot(label="Chat History", height=500)
            message_input = gr.Textbox(
                label="Your message", 
                placeholder="Ask about an image, continue chatting, or generate new images by typing 'generate [description]'",
                lines=2
            )
            chat_button = gr.Button("Send")
            generated_images = gr.Gallery(label="Generated Images", visible=True, columns=2, rows=2)
    
    # Chat interface interactions
    upload_button.click(add_image_to_chat, inputs=[image_input, chat_history], outputs=[current_image, chat_history])
    
    chat_button.click(
        unified_chat,
        inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input],
        outputs=[message_input, chat_interface, current_image, generated_images]
    )
    
    # Also trigger on Enter key
    message_input.submit(
        unified_chat,
        inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input],
        outputs=[message_input, chat_interface, current_image, generated_images]
    )
    
    clear_button.click(
        clear_chat,
        inputs=[current_image],
        outputs=[chat_interface, current_image, generated_images]
    )
    
    # Examples for the unified interface
    examples = gr.Examples(
        label="Example queries",
        examples=[
            ["What's in this image?"],
            ["Generate a cute kitten with big eyes"],
            ["Show me a mountain landscape at sunset"],
            ["Can you explain what's happening in this picture?"],
            ["Create an astronaut riding a horse"],
            ["Generate a futuristic cityscape with flying cars"],
        ],
        inputs=message_input,
    )

demo.launch(share=True)