Chatbot_Mining / app.py
Nguyen17's picture
update
d777f1b
raw
history blame
6.18 kB
import yaml
import torch
import logging
import argparse
import warnings
import pandas as pd
from tqdm.auto import tqdm
from jsonargparse import CLI
from types import SimpleNamespace
from llama_index.core.schema import TextNode
from langchain_huggingface import HuggingFaceEmbeddings
from llama_index.core import Prompt, Settings, VectorStoreIndex
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
import gradio as gr
def load_config(config_path='config.yaml'):
print('-> Loading config file ...')
cfg = yaml.safe_load(
open(config_path).read()
)
for k,v in cfg.items():
if type(v) == dict:
cfg[k] = SimpleNamespace(**v)
cfg = SimpleNamespace(**cfg)
return cfg
def get_prompt_template():
template = (
"Bạn là trợ lý ảo hữu ích và thông minh được huấn luyên được để trả lời các câu hỏi từ người dùng giữa trên các thông tin ngữ cảnh liên quan được cung cấp\n"
"Thông tin ngữ cảnh:\n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Dựa trên những thông tin ngữ cảnh bên trên, hãy trả lời câu hỏi sau: {query_str}\n"
)
qa_template = Prompt(template)
return qa_template
def reset_settings(cfg):
embed_model =HuggingFaceEmbeddings(
model_name=cfg.architecture.embedding_model
)
Settings.embed_model = embed_model
Settings.llm = None
def get_retriever(cfg, prompt_template):
chunks = pd.read_pickle('processed_chunks.pickle')['chunk'].values.tolist()
nodes = [TextNode(text=chunk) for chunk in chunks]
index = VectorStoreIndex(nodes=nodes)
retriever = index.as_query_engine(
similarity_top_k=cfg.retrieve.top_k,
text_qa_template=prompt_template
)
return retriever
def load_tokenizer(cfg):
tokenizer = AutoTokenizer.from_pretrained(
cfg.architecture.llm_model,
token=cfg.architecture.hf_token
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_llm(cfg):
if cfg.architecture.llm_quantized:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
else:
bnb_config = None
llm = AutoModelForCausalLM.from_pretrained(
cfg.architecture.llm_model,
torch_dtype=torch.bfloat16,
device_map=cfg.environment.device,
token=cfg.architecture.hf_token,
low_cpu_mem_usage=True,
quantization_config=bnb_config,
)
return llm.eval()
def run(text, intensity):
prompt = retriever.query(text).response
prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
streamer = TextStreamer(tokenizer, skip_prompt=True)
input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)
_ = language_model.generate(
**input_ids,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=cfg.generation.max_new_tokens,
do_sample=cfg.generation.do_sample,
temperature=cfg.generation.temperature
)
# print(20*'---')
res="Chatbot Data Mining 2024 \n \n \n"
max_length=intensity
return _
def vistral_chat(cfg, retriever, tokenizer, language_model):
demo = gr.Interface(fn=run,
inputs=[gr.Textbox(label="Nhập vào nội dung input",value="Con đường xưa em đi"),gr.Slider(label="Độ dài output muốn tạo ra", value=20, minimum=10, maximum=100, step=2)],
outputs=gr.Textbox(label="Output"), # <-- Number of output components: 1
)
demo.launch()
# while True:
# user_query = input('👨‍🦰 ')
# prompt = retriever.query(user_query).response
# prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
# streamer = TextStreamer(tokenizer, skip_prompt=True)
# input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)
# _ = language_model.generate(
# **input_ids,
# streamer=streamer,
# pad_token_id=tokenizer.pad_token_id,
# max_new_tokens=cfg.generation.max_new_tokens,
# do_sample=cfg.generation.do_sample,
# temperature=cfg.generation.temperature
# )
# print(20*'---')
def main(config_path):
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
try:
# Log the start of the process
logger.info("Starting the process with config file: %s", config_path)
# Load configuration from the file
config = load_config(config_path)
# Load necessary components
prompt_template = get_prompt_template()
# Replace OpenAI embed model and llm with custom ones
reset_settings(config)
# Get retriever
retriever = get_retriever(config, prompt_template)
# Load tokenizer and language model
tokenizer = load_tokenizer(config)
language_model = get_llm(config)
# Start the command line interface
vistral_chat(config, retriever, tokenizer, language_model)
# Log successful completion
logger.info("Process completed successfully.")
except FileNotFoundError as e:
logger.error("Configuration file not found: %s", e)
except Exception as e:
logger.exception("An error occurred: %s", e)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some configurations.')
parser.add_argument('--config', type=str, default='config.yaml', help='Path to the configuration file')
args = parser.parse_args()
main(args.config)