File size: 6,175 Bytes
d777f1b
32f2451
d777f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f2451
d777f1b
 
 
 
 
 
 
 
 
32f2451
d777f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f2451
 
 
d777f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652c199
d777f1b
 
 
 
 
 
652c199
 
 
32f2451
d777f1b
32f2451
 
 
d777f1b
 
 
 
 
 
32f2451
d777f1b
 
 
 
 
 
 
 
32f2451
d777f1b
32f2451
82f2fb9
d777f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f2fb9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import yaml
import torch
import logging
import argparse
import warnings
import pandas as pd
from tqdm.auto import tqdm
from jsonargparse import CLI
from types import SimpleNamespace
from llama_index.core.schema import TextNode
from langchain_huggingface import HuggingFaceEmbeddings
from llama_index.core import Prompt, Settings, VectorStoreIndex
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer

import gradio as gr



def load_config(config_path='config.yaml'):
    print('-> Loading config file ...')
    cfg = yaml.safe_load(
        open(config_path).read()
    )

    for k,v in cfg.items():
        if type(v) == dict:
            cfg[k] = SimpleNamespace(**v)
    cfg = SimpleNamespace(**cfg)
    return cfg

def get_prompt_template():
    template = (
    "Bạn là trợ lý ảo hữu ích và thông minh được huấn luyên được để trả lời các câu hỏi từ người dùng giữa trên các thông tin ngữ cảnh liên quan được cung cấp\n"
    "Thông tin ngữ cảnh:\n"
    "---------------------\n"
    "{context_str}"
    "\n---------------------\n"
    "Dựa trên những thông tin ngữ cảnh bên trên, hãy trả lời câu hỏi sau: {query_str}\n"
    )
    qa_template = Prompt(template)
    return qa_template

def reset_settings(cfg):
    embed_model =HuggingFaceEmbeddings(
        model_name=cfg.architecture.embedding_model
    )
    Settings.embed_model = embed_model
    Settings.llm = None  

def get_retriever(cfg, prompt_template):
    chunks = pd.read_pickle('processed_chunks.pickle')['chunk'].values.tolist()
    nodes = [TextNode(text=chunk) for chunk in chunks]
    index = VectorStoreIndex(nodes=nodes)
    retriever = index.as_query_engine(
        similarity_top_k=cfg.retrieve.top_k,
        text_qa_template=prompt_template
    )
    return retriever

def load_tokenizer(cfg):
    tokenizer =  AutoTokenizer.from_pretrained(
        cfg.architecture.llm_model,
        token=cfg.architecture.hf_token
    )

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    return tokenizer

def get_llm(cfg):
    if cfg.architecture.llm_quantized:
        bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_compute_dtype=torch.float16
            )
    else:
        bnb_config = None
            

    llm = AutoModelForCausalLM.from_pretrained(
        cfg.architecture.llm_model,
        torch_dtype=torch.bfloat16,
        device_map=cfg.environment.device,
        token=cfg.architecture.hf_token,
        low_cpu_mem_usage=True,
        quantization_config=bnb_config,
    )

    return llm.eval()


def run(text, intensity):
    prompt = retriever.query(text).response
    prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
    streamer = TextStreamer(tokenizer, skip_prompt=True)
    input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)

    _ = language_model.generate(
            **input_ids,
            streamer=streamer,
            pad_token_id=tokenizer.pad_token_id,
            max_new_tokens=cfg.generation.max_new_tokens,
            do_sample=cfg.generation.do_sample,
            temperature=cfg.generation.temperature
        )

    # print(20*'---')



    res="Chatbot Data Mining 2024   \n  \n  \n"
    max_length=intensity

    return _


def vistral_chat(cfg, retriever, tokenizer, language_model):
    demo = gr.Interface(fn=run,
                    inputs=[gr.Textbox(label="Nhập vào nội dung input",value="Con đường xưa em đi"),gr.Slider(label="Độ dài output muốn tạo ra", value=20, minimum=10, maximum=100, step=2)],
                    outputs=gr.Textbox(label="Output"),  # <-- Number of output components: 1
                    )

    demo.launch()



    # while True:
    #     user_query = input('👨‍🦰 ')
    #     prompt = retriever.query(user_query).response
    #     prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
    #     streamer = TextStreamer(tokenizer, skip_prompt=True)
    #     input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)

    #     _ = language_model.generate(
    #         **input_ids,
    #         streamer=streamer,
    #         pad_token_id=tokenizer.pad_token_id,
    #         max_new_tokens=cfg.generation.max_new_tokens,
    #         do_sample=cfg.generation.do_sample,
    #         temperature=cfg.generation.temperature
    #     )

    #     print(20*'---')


def main(config_path):
    # Configure logging
    logging.basicConfig(level=logging.INFO, 
                        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logger = logging.getLogger(__name__)
    
    try:
        # Log the start of the process
        logger.info("Starting the process with config file: %s", config_path)
        
        # Load configuration from the file
        config = load_config(config_path)
        
        # Load necessary components
        prompt_template = get_prompt_template()
        
        # Replace OpenAI embed model and llm with custom ones
        reset_settings(config)
        
        # Get retriever
        retriever = get_retriever(config, prompt_template)
        
        # Load tokenizer and language model
        tokenizer = load_tokenizer(config)
        language_model = get_llm(config)
        
        # Start the command line interface
        vistral_chat(config, retriever, tokenizer, language_model)
        
        # Log successful completion
        logger.info("Process completed successfully.")
        
    except FileNotFoundError as e:
        logger.error("Configuration file not found: %s", e)
    except Exception as e:
        logger.exception("An error occurred: %s", e)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Process some configurations.')
    parser.add_argument('--config', type=str, default='config.yaml', help='Path to the configuration file')
    args = parser.parse_args()
    main(args.config)