Spaces:
Sleeping
Sleeping
File size: 6,175 Bytes
d777f1b 32f2451 d777f1b 32f2451 d777f1b 32f2451 d777f1b 32f2451 d777f1b 652c199 d777f1b 652c199 32f2451 d777f1b 32f2451 d777f1b 32f2451 d777f1b 32f2451 d777f1b 32f2451 82f2fb9 d777f1b 82f2fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import yaml
import torch
import logging
import argparse
import warnings
import pandas as pd
from tqdm.auto import tqdm
from jsonargparse import CLI
from types import SimpleNamespace
from llama_index.core.schema import TextNode
from langchain_huggingface import HuggingFaceEmbeddings
from llama_index.core import Prompt, Settings, VectorStoreIndex
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
import gradio as gr
def load_config(config_path='config.yaml'):
print('-> Loading config file ...')
cfg = yaml.safe_load(
open(config_path).read()
)
for k,v in cfg.items():
if type(v) == dict:
cfg[k] = SimpleNamespace(**v)
cfg = SimpleNamespace(**cfg)
return cfg
def get_prompt_template():
template = (
"Bạn là trợ lý ảo hữu ích và thông minh được huấn luyên được để trả lời các câu hỏi từ người dùng giữa trên các thông tin ngữ cảnh liên quan được cung cấp\n"
"Thông tin ngữ cảnh:\n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Dựa trên những thông tin ngữ cảnh bên trên, hãy trả lời câu hỏi sau: {query_str}\n"
)
qa_template = Prompt(template)
return qa_template
def reset_settings(cfg):
embed_model =HuggingFaceEmbeddings(
model_name=cfg.architecture.embedding_model
)
Settings.embed_model = embed_model
Settings.llm = None
def get_retriever(cfg, prompt_template):
chunks = pd.read_pickle('processed_chunks.pickle')['chunk'].values.tolist()
nodes = [TextNode(text=chunk) for chunk in chunks]
index = VectorStoreIndex(nodes=nodes)
retriever = index.as_query_engine(
similarity_top_k=cfg.retrieve.top_k,
text_qa_template=prompt_template
)
return retriever
def load_tokenizer(cfg):
tokenizer = AutoTokenizer.from_pretrained(
cfg.architecture.llm_model,
token=cfg.architecture.hf_token
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_llm(cfg):
if cfg.architecture.llm_quantized:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
else:
bnb_config = None
llm = AutoModelForCausalLM.from_pretrained(
cfg.architecture.llm_model,
torch_dtype=torch.bfloat16,
device_map=cfg.environment.device,
token=cfg.architecture.hf_token,
low_cpu_mem_usage=True,
quantization_config=bnb_config,
)
return llm.eval()
def run(text, intensity):
prompt = retriever.query(text).response
prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
streamer = TextStreamer(tokenizer, skip_prompt=True)
input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)
_ = language_model.generate(
**input_ids,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=cfg.generation.max_new_tokens,
do_sample=cfg.generation.do_sample,
temperature=cfg.generation.temperature
)
# print(20*'---')
res="Chatbot Data Mining 2024 \n \n \n"
max_length=intensity
return _
def vistral_chat(cfg, retriever, tokenizer, language_model):
demo = gr.Interface(fn=run,
inputs=[gr.Textbox(label="Nhập vào nội dung input",value="Con đường xưa em đi"),gr.Slider(label="Độ dài output muốn tạo ra", value=20, minimum=10, maximum=100, step=2)],
outputs=gr.Textbox(label="Output"), # <-- Number of output components: 1
)
demo.launch()
# while True:
# user_query = input('👨🦰 ')
# prompt = retriever.query(user_query).response
# prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
# streamer = TextStreamer(tokenizer, skip_prompt=True)
# input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)
# _ = language_model.generate(
# **input_ids,
# streamer=streamer,
# pad_token_id=tokenizer.pad_token_id,
# max_new_tokens=cfg.generation.max_new_tokens,
# do_sample=cfg.generation.do_sample,
# temperature=cfg.generation.temperature
# )
# print(20*'---')
def main(config_path):
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
try:
# Log the start of the process
logger.info("Starting the process with config file: %s", config_path)
# Load configuration from the file
config = load_config(config_path)
# Load necessary components
prompt_template = get_prompt_template()
# Replace OpenAI embed model and llm with custom ones
reset_settings(config)
# Get retriever
retriever = get_retriever(config, prompt_template)
# Load tokenizer and language model
tokenizer = load_tokenizer(config)
language_model = get_llm(config)
# Start the command line interface
vistral_chat(config, retriever, tokenizer, language_model)
# Log successful completion
logger.info("Process completed successfully.")
except FileNotFoundError as e:
logger.error("Configuration file not found: %s", e)
except Exception as e:
logger.exception("An error occurred: %s", e)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some configurations.')
parser.add_argument('--config', type=str, default='config.yaml', help='Path to the configuration file')
args = parser.parse_args()
main(args.config)
|