Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from PIL import Image | |
import pytesseract | |
from pdf2image import convert_from_path | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain.memory import ConversationBufferMemory | |
from langchain_groq import ChatGroq | |
from langchain_community.vectorstores import FAISS | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_core.vectorstores import VectorStoreRetriever | |
import streamlit.components.v1 as components | |
from streamlit_pdf_viewer import pdf_viewer | |
from io import BytesIO | |
import base64 | |
if 'pdf_ref' not in st.session_state: | |
st.session_state.pdf_ref = None | |
# Initialize the Groq API Key and the model | |
os.environ["GROQ_API_KEY"] = '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' | |
# config = {'max_new_tokens': 512, 'context_length': 8000} | |
llm = ChatGroq( | |
model='llama3-70b-8192', | |
temperature=0.5, | |
max_tokens=None, | |
timeout=None, | |
max_retries=2 | |
) | |
# Define OCR functions for image and PDF files | |
def ocr_image(image_path, language='eng+guj'): | |
img = Image.open(image_path) | |
text = pytesseract.image_to_string(img, lang=language) | |
return text | |
def ocr_pdf(pdf_path, language='eng+guj'): | |
images = convert_from_path(pdf_path) | |
all_text = "" | |
for img in images: | |
text = pytesseract.image_to_string(img, lang=language) | |
all_text += text + "\n" | |
return all_text | |
def ocr_file(file_path): | |
file_extension = os.path.splitext(file_path)[1].lower() | |
if file_extension == ".pdf": | |
text_re = ocr_pdf(file_path, language='guj+eng') | |
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]: | |
text_re = ocr_image(file_path, language='guj+eng') | |
else: | |
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.") | |
return text_re | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
# Function to create or update the vector store | |
def get_vector_store(text_chunks): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
# Ensure the directory exists before saving the vector store | |
os.makedirs("faiss_index", exist_ok=True) | |
vector_store.save_local("faiss_index") | |
return vector_store | |
# Function to process multiple files and extract vector store | |
def process_ocr_and_pdf_files(file_paths): | |
raw_text = "" | |
for file_path in file_paths: | |
raw_text += ocr_file(file_path) + "\n" | |
text_chunks = get_text_chunks(raw_text) | |
return get_vector_store(text_chunks) | |
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
# new_vector_store = FAISS.load_local( | |
# "faiss_index", embeddings, allow_dangerous_deserialization=True | |
# ) | |
# docs = new_vector_store.similarity_search("qux") | |
# Conversational chain for Q&A | |
def get_conversational_chain(): | |
template = """Core Identity & Responsibilities | |
Role: Official AI Assistant for Admission Committee for Professional Courses (ACPC), Gujarat | |
Mission: Process OCR-extracted text and provide clear, direct guidance on admissions and scholarships | |
Focus: Deliver user-friendly responses while handling OCR complexities internally | |
Processing Framework | |
1. Text & Document Processing | |
Process OCR-extracted text from various document types with attention to tables and structured data | |
Internally identify and handle OCR errors without explicitly mentioning them unless critical | |
Preserve tabular structures and relationships between data points | |
Present information in clean, readable formats regardless of source OCR quality | |
2. Language Handling | |
Support seamless communication in both Gujarati and English | |
Respond in the same language as the user's query | |
Present technical terms in both languages when relevant | |
Adjust language complexity to user comprehension level | |
3. Response Principles | |
Provide direct, concise answers (2-3 sentences for simple queries) | |
Skip unnecessary OCR quality disclaimers unless information is critically ambiguous | |
Present information in user-friendly formats, especially for tables and numerical data | |
Maintain professional yet conversational tone | |
Query Handling Strategies | |
1. Direct Information Queries | |
Provide straightforward answers without mentioning OCR processing | |
Example: | |
User: "What is the last date for application submission?" | |
Response: "The last date for application submission is June 15, 2025." | |
(NOT: "Based on the OCR-processed text, the last date appears to be...") | |
2. Table Data Extraction | |
Present tabular information in clean, structured format | |
Preserve relationships between data points | |
Example: | |
User: "What are the fees for different courses?" | |
Response: | |
"The fees for various courses are: | |
B.Tech: ₹1,15,000 (General), ₹58,000 (SC/ST) | |
B.Pharm: ₹85,000 (General), ₹42,500 (SC/ST)" | |
(NOT: "According to the OCR-extracted table, which may have quality issues...") | |
3. Ambiguous Information Handling | |
If OCR quality affects critical information (like dates, amounts, eligibility): | |
Provide the most likely correct information | |
Add a brief note suggesting verification only for critical information | |
Example: "The application deadline is June 15, 2025. For this important deadline, we recommend confirming on the official ACPC website." | |
4. Uncertain Information Protocol | |
For critically unclear OCR content: | |
State the most probable information | |
Add a simple verification suggestion without mentioning OCR | |
Example: "Based on the available information, the income limit appears to be ₹6,00,000. For this critical criterion, please verify on the official ACPC portal." | |
5. Structured Document Navigation | |
Present information in the same logical structure as the original document | |
Use headings and bullet points for clarity when appropriate | |
Maintain document hierarchies when explaining multi-step processes | |
6. Out-of-Scope Queries | |
Politely redirect without mentioning document or OCR limitations | |
Example: "This query is outside the scope of ACPC admission guidelines. For information about [topic], please contact [appropriate authority]." | |
7. Key Information Emphasis | |
Highlight critical information like deadlines, eligibility criteria, and document requirements | |
Make important numerical data visually distinct | |
Prioritize accuracy for dates, amounts, and eligibility requirements | |
8. Multi-Part Query Handling | |
Address each component of multi-part queries separately | |
Maintain logical flow between related pieces of information | |
Preserve context when explaining complex processes | |
9. Completeness Guidelines | |
Ensure responses cover all aspects of user queries | |
Provide step-by-step guidance for procedural questions | |
Include relevant related information that users might need | |
10. Response Quality Control | |
Internally verify numerical data consistency | |
Apply contextual understanding to identify potential OCR errors without mentioning them | |
Present information with confidence unless critically uncertain | |
Focus on delivering actionable information rather than discussing document limitations | |
Input: | |
OCR-processed text from uploaded documents: {context} | |
Chat History: {history} | |
Current Question: {question} | |
Output: | |
Give a clear, direct, and user-friendly response that focuses on the information itself rather than its OCR source. Present information confidently, mentioning verification only for critically important or potentially ambiguous details. | |
""" | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
new_vector_store = FAISS.load_local( | |
"faiss_index", embeddings, allow_dangerous_deserialization=True | |
) | |
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template) | |
qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),}) | |
return qa_chain | |
def handle_uploaded_file(uploaded_file, show_in_sidebar=False): | |
file_extension = os.path.splitext(uploaded_file.name)[1].lower() | |
file_path = os.path.join("temp", uploaded_file.name) | |
os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
# Show document in the main panel and optionally in the sidebar | |
if show_in_sidebar: | |
st.sidebar.write(f"### File: {uploaded_file.name}") | |
# if file_extension == ".pdf": | |
# st.session_state.pdf_ref = uploaded_file # Save the PDF to session state | |
# binary_data = st.session_state.pdf_ref.getvalue() # Get the binary data of the PDF | |
# # Use the pdf_viewer to display the PDF | |
# # sidebar.pdf_viewer(input=binary_data, width=700) | |
if file_extension == ".pdf": | |
# Display the PDF in the sidebar by embedding the PDF file | |
with open(file_path, "rb") as pdf_file: | |
pdf_data = pdf_file.read() | |
# Use the HTML iframe to display the PDF in the sidebar | |
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8') | |
st.sidebar.markdown(f'<iframe src="data:application/pdf;base64,{pdf_base64}" width="500" height="500"></iframe>', unsafe_allow_html=True) | |
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: | |
img = Image.open(file_path) | |
st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_container_width=True) # Updated here | |
else: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
st.sidebar.text_area("File Content", content, height=300) | |
# Optionally show document in the main content area | |
# st.write(f"### Main Panel - {uploaded_file.name}") | |
# if file_extension == '.pdf': | |
# st.write("Displaying PDF:") | |
# st.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">') | |
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: | |
# img = Image.open(file_path) | |
# st.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True) | |
# else: | |
# with open(file_path, 'r', encoding='utf-8') as f: | |
# content = f.read() | |
# st.text_area("File Content", content, height=300) | |
def user_input(user_question): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True) | |
result = response.get("result", "No result found") | |
# Save the question and answer to session state for history tracking | |
if 'conversation_history' not in st.session_state: | |
st.session_state.conversation_history = [] | |
# Append new question and response to the history | |
st.session_state.conversation_history.append({'question': user_question, 'answer': result}) | |
return result | |
# def handle_uploaded_file(uploaded_file, show_in_sidebar=False): | |
# file_extension = os.path.splitext(uploaded_file.name)[1].lower() | |
# file_path = os.path.join("temp", uploaded_file.name) | |
# os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
# with open(file_path, "wb") as f: | |
# f.write(uploaded_file.getbuffer()) | |
# # Show document in the main panel and optionally in the sidebar | |
# if show_in_sidebar: | |
# st.sidebar.write(f"### File: {uploaded_file.name}") | |
# if file_extension == '.pdf': | |
# st.sidebar.write("Displaying PDF:") | |
# st.sidebar.components.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">') | |
# # st.sidebar.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">') | |
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: | |
# img = Image.open(file_path) | |
# st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True) | |
# else: | |
# with open(file_path, 'r', encoding='utf-8') as f: | |
# content = f.read() | |
# st.sidebar.text_area("File Content", content, height=300) | |
# Optionally show document in the main content area | |
# st.write(f"### Main Panel - {uploaded_file.name}") | |
# if file_extension == '.pdf': | |
# st.write("Displaying PDF:") | |
# st.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">') | |
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: | |
# img = Image.open(file_path) | |
# st.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True) | |
# else: | |
# with open(file_path, 'r', encoding='utf-8') as f: | |
# content = f.read() | |
# st.text_area("File Content", content, height=300) | |
# Streamlit app to upload files and interact with the Q&A system | |
def main(): | |
st.title("File Upload and OCR Processing") | |
st.write("Upload up to 5 files (PDF, JPG, JPEG, PNG, BMP)") | |
uploaded_files = st.file_uploader("Choose files", type=["pdf", "jpg", "jpeg", "png", "bmp"], accept_multiple_files=True) | |
if len(uploaded_files) > 0: | |
file_paths = [] | |
# Save uploaded files and process them | |
for uploaded_file in uploaded_files[:5]: # Limit to 5 files | |
file_path = os.path.join("temp", uploaded_file.name) | |
os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
file_paths.append(file_path) | |
# Process the OCR and PDF files and store the vector data | |
st.write("Processing files...") | |
vector_store = process_ocr_and_pdf_files(file_paths) | |
st.write("Processing completed! The vector store has been updated.") | |
show_in_sidebar = st.sidebar.checkbox("Show files in Sidebar", value=True) | |
if len(uploaded_files) > 0: | |
# Process and display each uploaded file in its format | |
for uploaded_file in uploaded_files: | |
handle_uploaded_file(uploaded_file, show_in_sidebar) | |
# Ask user for a question related to the documents | |
user_question = st.text_input("Ask a question related to the uploaded documents:") | |
if user_question: | |
response = user_input(user_question) | |
st.write("Answer:", response) | |
# Button to display chat history | |
# if st.button("Show Chat History"): | |
# history = st.session_state.get('history', []) | |
# if history: | |
# st.write("Conversation History:") | |
# for idx, (q, a) in enumerate(history): | |
# st.write(f"Q{idx+1}: {q}") | |
# st.write(f"A{idx+1}: {a}") | |
# else: | |
# st.write("No conversation history.") | |
with st.expander('Conversation History'): | |
for entry in st.session_state.conversation_history: | |
st.info(f"Q: {entry['question']}\nA: {entry['answer']}") | |
if __name__ == "__main__": | |
main() | |