Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract
|
5 |
+
from pdf2image import convert_from_path
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain_groq import ChatGroq
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain_core.vectorstores import VectorStoreRetriever
|
14 |
+
import streamlit.components.v1 as components
|
15 |
+
from streamlit_pdf_viewer import pdf_viewer
|
16 |
+
from io import BytesIO
|
17 |
+
import base64
|
18 |
+
|
19 |
+
if 'pdf_ref' not in st.session_state:
|
20 |
+
st.session_state.pdf_ref = None
|
21 |
+
|
22 |
+
# Initialize the Groq API Key and the model
|
23 |
+
os.environ["GROQ_API_KEY"] = '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'
|
24 |
+
# config = {'max_new_tokens': 512, 'context_length': 8000}
|
25 |
+
llm = ChatGroq(
|
26 |
+
model='llama3-70b-8192',
|
27 |
+
temperature=0.5,
|
28 |
+
max_tokens=None,
|
29 |
+
timeout=None,
|
30 |
+
max_retries=2
|
31 |
+
)
|
32 |
+
|
33 |
+
# Define OCR functions for image and PDF files
|
34 |
+
def ocr_image(image_path, language='eng+guj'):
|
35 |
+
img = Image.open(image_path)
|
36 |
+
text = pytesseract.image_to_string(img, lang=language)
|
37 |
+
return text
|
38 |
+
|
39 |
+
def ocr_pdf(pdf_path, language='eng+guj'):
|
40 |
+
images = convert_from_path(pdf_path)
|
41 |
+
all_text = ""
|
42 |
+
for img in images:
|
43 |
+
text = pytesseract.image_to_string(img, lang=language)
|
44 |
+
all_text += text + "\n"
|
45 |
+
return all_text
|
46 |
+
|
47 |
+
def ocr_file(file_path):
|
48 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
49 |
+
|
50 |
+
if file_extension == ".pdf":
|
51 |
+
text_re = ocr_pdf(file_path, language='guj+eng')
|
52 |
+
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
|
53 |
+
text_re = ocr_image(file_path, language='guj+eng')
|
54 |
+
else:
|
55 |
+
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.")
|
56 |
+
|
57 |
+
return text_re
|
58 |
+
|
59 |
+
def get_text_chunks(text):
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
61 |
+
chunks = text_splitter.split_text(text)
|
62 |
+
return chunks
|
63 |
+
|
64 |
+
# Function to create or update the vector store
|
65 |
+
def get_vector_store(text_chunks):
|
66 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
67 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
68 |
+
|
69 |
+
# Ensure the directory exists before saving the vector store
|
70 |
+
os.makedirs("faiss_index", exist_ok=True)
|
71 |
+
vector_store.save_local("faiss_index")
|
72 |
+
|
73 |
+
return vector_store
|
74 |
+
|
75 |
+
# Function to process multiple files and extract vector store
|
76 |
+
def process_ocr_and_pdf_files(file_paths):
|
77 |
+
raw_text = ""
|
78 |
+
for file_path in file_paths:
|
79 |
+
raw_text += ocr_file(file_path) + "\n"
|
80 |
+
text_chunks = get_text_chunks(raw_text)
|
81 |
+
return get_vector_store(text_chunks)
|
82 |
+
|
83 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
84 |
+
# new_vector_store = FAISS.load_local(
|
85 |
+
# "faiss_index", embeddings, allow_dangerous_deserialization=True
|
86 |
+
# )
|
87 |
+
|
88 |
+
# docs = new_vector_store.similarity_search("qux")
|
89 |
+
# Conversational chain for Q&A
|
90 |
+
def get_conversational_chain():
|
91 |
+
template = """Core Identity & Responsibilities
|
92 |
+
|
93 |
+
Role: Official AI Assistant for Admission Committee for Professional Courses (ACPC), Gujarat
|
94 |
+
Mission: Process OCR-extracted text and provide clear, direct guidance on admissions and scholarships
|
95 |
+
Focus: Deliver user-friendly responses while handling OCR complexities internally
|
96 |
+
|
97 |
+
Processing Framework
|
98 |
+
1. Text & Document Processing
|
99 |
+
|
100 |
+
Process OCR-extracted text from various document types with attention to tables and structured data
|
101 |
+
Internally identify and handle OCR errors without explicitly mentioning them unless critical
|
102 |
+
Preserve tabular structures and relationships between data points
|
103 |
+
Present information in clean, readable formats regardless of source OCR quality
|
104 |
+
|
105 |
+
2. Language Handling
|
106 |
+
|
107 |
+
Support seamless communication in both Gujarati and English
|
108 |
+
Respond in the same language as the user's query
|
109 |
+
Present technical terms in both languages when relevant
|
110 |
+
Adjust language complexity to user comprehension level
|
111 |
+
|
112 |
+
3. Response Principles
|
113 |
+
|
114 |
+
Provide direct, concise answers (2-3 sentences for simple queries)
|
115 |
+
Skip unnecessary OCR quality disclaimers unless information is critically ambiguous
|
116 |
+
Present information in user-friendly formats, especially for tables and numerical data
|
117 |
+
Maintain professional yet conversational tone
|
118 |
+
|
119 |
+
Query Handling Strategies
|
120 |
+
1. Direct Information Queries
|
121 |
+
|
122 |
+
Provide straightforward answers without mentioning OCR processing
|
123 |
+
Example:
|
124 |
+
User: "What is the last date for application submission?"
|
125 |
+
Response: "The last date for application submission is June 15, 2025."
|
126 |
+
(NOT: "Based on the OCR-processed text, the last date appears to be...")
|
127 |
+
|
128 |
+
2. Table Data Extraction
|
129 |
+
|
130 |
+
Present tabular information in clean, structured format
|
131 |
+
Preserve relationships between data points
|
132 |
+
Example:
|
133 |
+
User: "What are the fees for different courses?"
|
134 |
+
Response:
|
135 |
+
"The fees for various courses are:
|
136 |
+
|
137 |
+
B.Tech: ₹1,15,000 (General), ₹58,000 (SC/ST)
|
138 |
+
B.Pharm: ₹85,000 (General), ₹42,500 (SC/ST)"
|
139 |
+
(NOT: "According to the OCR-extracted table, which may have quality issues...")
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
3. Ambiguous Information Handling
|
144 |
+
|
145 |
+
If OCR quality affects critical information (like dates, amounts, eligibility):
|
146 |
+
|
147 |
+
Provide the most likely correct information
|
148 |
+
Add a brief note suggesting verification only for critical information
|
149 |
+
Example: "The application deadline is June 15, 2025. For this important deadline, we recommend confirming on the official ACPC website."
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
4. Uncertain Information Protocol
|
154 |
+
|
155 |
+
For critically unclear OCR content:
|
156 |
+
|
157 |
+
State the most probable information
|
158 |
+
Add a simple verification suggestion without mentioning OCR
|
159 |
+
Example: "Based on the available information, the income limit appears to be ₹6,00,000. For this critical criterion, please verify on the official ACPC portal."
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
5. Structured Document Navigation
|
164 |
+
|
165 |
+
Present information in the same logical structure as the original document
|
166 |
+
Use headings and bullet points for clarity when appropriate
|
167 |
+
Maintain document hierarchies when explaining multi-step processes
|
168 |
+
|
169 |
+
6. Out-of-Scope Queries
|
170 |
+
|
171 |
+
Politely redirect without mentioning document or OCR limitations
|
172 |
+
Example: "This query is outside the scope of ACPC admission guidelines. For information about [topic], please contact [appropriate authority]."
|
173 |
+
|
174 |
+
7. Key Information Emphasis
|
175 |
+
|
176 |
+
Highlight critical information like deadlines, eligibility criteria, and document requirements
|
177 |
+
Make important numerical data visually distinct
|
178 |
+
Prioritize accuracy for dates, amounts, and eligibility requirements
|
179 |
+
|
180 |
+
8. Multi-Part Query Handling
|
181 |
+
|
182 |
+
Address each component of multi-part queries separately
|
183 |
+
Maintain logical flow between related pieces of information
|
184 |
+
Preserve context when explaining complex processes
|
185 |
+
|
186 |
+
9. Completeness Guidelines
|
187 |
+
|
188 |
+
Ensure responses cover all aspects of user queries
|
189 |
+
Provide step-by-step guidance for procedural questions
|
190 |
+
Include relevant related information that users might need
|
191 |
+
|
192 |
+
10. Response Quality Control
|
193 |
+
|
194 |
+
Internally verify numerical data consistency
|
195 |
+
Apply contextual understanding to identify potential OCR errors without mentioning them
|
196 |
+
Present information with confidence unless critically uncertain
|
197 |
+
Focus on delivering actionable information rather than discussing document limitations
|
198 |
+
|
199 |
+
Input:
|
200 |
+
OCR-processed text from uploaded documents: {context}
|
201 |
+
Chat History: {history}
|
202 |
+
Current Question: {question}
|
203 |
+
Output:
|
204 |
+
Give a clear, direct, and user-friendly response that focuses on the information itself rather than its OCR source. Present information confidently, mentioning verification only for critically important or potentially ambiguous details.
|
205 |
+
"""
|
206 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
207 |
+
new_vector_store = FAISS.load_local(
|
208 |
+
"faiss_index", embeddings, allow_dangerous_deserialization=True
|
209 |
+
)
|
210 |
+
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)
|
211 |
+
qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),})
|
212 |
+
return qa_chain
|
213 |
+
|
214 |
+
def handle_uploaded_file(uploaded_file, show_in_sidebar=False):
|
215 |
+
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
|
216 |
+
file_path = os.path.join("temp", uploaded_file.name)
|
217 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
218 |
+
|
219 |
+
with open(file_path, "wb") as f:
|
220 |
+
f.write(uploaded_file.getbuffer())
|
221 |
+
|
222 |
+
# Show document in the main panel and optionally in the sidebar
|
223 |
+
if show_in_sidebar:
|
224 |
+
st.sidebar.write(f"### File: {uploaded_file.name}")
|
225 |
+
|
226 |
+
# if file_extension == ".pdf":
|
227 |
+
# st.session_state.pdf_ref = uploaded_file # Save the PDF to session state
|
228 |
+
# binary_data = st.session_state.pdf_ref.getvalue() # Get the binary data of the PDF
|
229 |
+
# # Use the pdf_viewer to display the PDF
|
230 |
+
# # sidebar.pdf_viewer(input=binary_data, width=700)
|
231 |
+
if file_extension == ".pdf":
|
232 |
+
# Display the PDF in the sidebar by embedding the PDF file
|
233 |
+
with open(file_path, "rb") as pdf_file:
|
234 |
+
pdf_data = pdf_file.read()
|
235 |
+
# Use the HTML iframe to display the PDF in the sidebar
|
236 |
+
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8')
|
237 |
+
st.sidebar.markdown(f'<iframe src="data:application/pdf;base64,{pdf_base64}" width="500" height="500"></iframe>', unsafe_allow_html=True)
|
238 |
+
|
239 |
+
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
240 |
+
img = Image.open(file_path)
|
241 |
+
st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_container_width=True) # Updated here
|
242 |
+
else:
|
243 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
244 |
+
content = f.read()
|
245 |
+
st.sidebar.text_area("File Content", content, height=300)
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
# Optionally show document in the main content area
|
250 |
+
# st.write(f"### Main Panel - {uploaded_file.name}")
|
251 |
+
# if file_extension == '.pdf':
|
252 |
+
# st.write("Displaying PDF:")
|
253 |
+
# st.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
254 |
+
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
255 |
+
# img = Image.open(file_path)
|
256 |
+
# st.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True)
|
257 |
+
# else:
|
258 |
+
# with open(file_path, 'r', encoding='utf-8') as f:
|
259 |
+
# content = f.read()
|
260 |
+
# st.text_area("File Content", content, height=300)
|
261 |
+
|
262 |
+
def user_input(user_question):
|
263 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
264 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
265 |
+
docs = new_db.similarity_search(user_question)
|
266 |
+
chain = get_conversational_chain()
|
267 |
+
response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True)
|
268 |
+
result = response.get("result", "No result found")
|
269 |
+
|
270 |
+
# Save the question and answer to session state for history tracking
|
271 |
+
if 'conversation_history' not in st.session_state:
|
272 |
+
st.session_state.conversation_history = []
|
273 |
+
|
274 |
+
# Append new question and response to the history
|
275 |
+
st.session_state.conversation_history.append({'question': user_question, 'answer': result})
|
276 |
+
|
277 |
+
return result
|
278 |
+
|
279 |
+
# def handle_uploaded_file(uploaded_file, show_in_sidebar=False):
|
280 |
+
# file_extension = os.path.splitext(uploaded_file.name)[1].lower()
|
281 |
+
# file_path = os.path.join("temp", uploaded_file.name)
|
282 |
+
# os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
283 |
+
|
284 |
+
# with open(file_path, "wb") as f:
|
285 |
+
# f.write(uploaded_file.getbuffer())
|
286 |
+
|
287 |
+
# # Show document in the main panel and optionally in the sidebar
|
288 |
+
# if show_in_sidebar:
|
289 |
+
# st.sidebar.write(f"### File: {uploaded_file.name}")
|
290 |
+
# if file_extension == '.pdf':
|
291 |
+
# st.sidebar.write("Displaying PDF:")
|
292 |
+
# st.sidebar.components.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
293 |
+
|
294 |
+
# # st.sidebar.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
295 |
+
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
296 |
+
# img = Image.open(file_path)
|
297 |
+
# st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True)
|
298 |
+
# else:
|
299 |
+
# with open(file_path, 'r', encoding='utf-8') as f:
|
300 |
+
# content = f.read()
|
301 |
+
# st.sidebar.text_area("File Content", content, height=300)
|
302 |
+
|
303 |
+
# Optionally show document in the main content area
|
304 |
+
# st.write(f"### Main Panel - {uploaded_file.name}")
|
305 |
+
# if file_extension == '.pdf':
|
306 |
+
# st.write("Displaying PDF:")
|
307 |
+
# st.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
308 |
+
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
309 |
+
# img = Image.open(file_path)
|
310 |
+
# st.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True)
|
311 |
+
# else:
|
312 |
+
# with open(file_path, 'r', encoding='utf-8') as f:
|
313 |
+
# content = f.read()
|
314 |
+
# st.text_area("File Content", content, height=300)
|
315 |
+
|
316 |
+
# Streamlit app to upload files and interact with the Q&A system
|
317 |
+
def main():
|
318 |
+
st.title("File Upload and OCR Processing")
|
319 |
+
st.write("Upload up to 5 files (PDF, JPG, JPEG, PNG, BMP)")
|
320 |
+
|
321 |
+
|
322 |
+
uploaded_files = st.file_uploader("Choose files", type=["pdf", "jpg", "jpeg", "png", "bmp"], accept_multiple_files=True)
|
323 |
+
|
324 |
+
if len(uploaded_files) > 0:
|
325 |
+
file_paths = []
|
326 |
+
|
327 |
+
# Save uploaded files and process them
|
328 |
+
for uploaded_file in uploaded_files[:5]: # Limit to 5 files
|
329 |
+
file_path = os.path.join("temp", uploaded_file.name)
|
330 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
331 |
+
with open(file_path, "wb") as f:
|
332 |
+
f.write(uploaded_file.getbuffer())
|
333 |
+
file_paths.append(file_path)
|
334 |
+
|
335 |
+
|
336 |
+
# Process the OCR and PDF files and store the vector data
|
337 |
+
st.write("Processing files...")
|
338 |
+
vector_store = process_ocr_and_pdf_files(file_paths)
|
339 |
+
st.write("Processing completed! The vector store has been updated.")
|
340 |
+
|
341 |
+
show_in_sidebar = st.sidebar.checkbox("Show files in Sidebar", value=True)
|
342 |
+
|
343 |
+
if len(uploaded_files) > 0:
|
344 |
+
# Process and display each uploaded file in its format
|
345 |
+
for uploaded_file in uploaded_files:
|
346 |
+
handle_uploaded_file(uploaded_file, show_in_sidebar)
|
347 |
+
|
348 |
+
# Ask user for a question related to the documents
|
349 |
+
user_question = st.text_input("Ask a question related to the uploaded documents:")
|
350 |
+
|
351 |
+
if user_question:
|
352 |
+
response = user_input(user_question)
|
353 |
+
st.write("Answer:", response)
|
354 |
+
|
355 |
+
# Button to display chat history
|
356 |
+
|
357 |
+
# if st.button("Show Chat History"):
|
358 |
+
# history = st.session_state.get('history', [])
|
359 |
+
# if history:
|
360 |
+
# st.write("Conversation History:")
|
361 |
+
# for idx, (q, a) in enumerate(history):
|
362 |
+
# st.write(f"Q{idx+1}: {q}")
|
363 |
+
# st.write(f"A{idx+1}: {a}")
|
364 |
+
# else:
|
365 |
+
# st.write("No conversation history.")
|
366 |
+
with st.expander('Conversation History'):
|
367 |
+
for entry in st.session_state.conversation_history:
|
368 |
+
st.info(f"Q: {entry['question']}\nA: {entry['answer']}")
|
369 |
+
|
370 |
+
|
371 |
+
if __name__ == "__main__":
|
372 |
+
main()
|