File size: 26,224 Bytes
041508c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import numpy as np
import torch
import torch.utils.data
from torch import nn
from pathlib import Path
from scipy.stats import iqr
import os
#Note: due to issues with the numpy rng for multiprocessing
#(https://github.com/pytorch/pytorch/issues/5059) that could be
#fixed by a custom worker_init_fn we use random throughout for convenience
import random
from skimage import transform
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
from scipy.signal import butter, sosfilt, sosfiltfilt, sosfreqz
#https://stackoverflow.com/questions/12093594/how-to-implement-band-pass-butterworth-filter-with-scipy-signal-butter
def butter_filter(lowcut=10, highcut=20, fs=50, order=5, btype='band'): # image processing Butterworth filter
"""returns butterworth filter with given specifications"""
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
sos = butter(order, [low, high] if btype == "band" else (low if btype == "low" else high), analog=False,
btype=btype, output='sos')
return sos
def butter_filter_frequency_response(filter):
"""returns frequency response of a given filter (result of call of butter_filter)"""
w, h = sosfreqz(filter)
# gain vs. freq(Hz)
# plt.plot((fs * 0.5 / np.pi) * w, abs(h))
return w, h
def apply_butter_filter(data, filter, forwardbackward=True): # The function provides options for handling the edges of the signal.
"""pass filter from call of butter_filter to data (assuming time axis at dimension 0)"""
if forwardbackward:
return sosfiltfilt(filter, data, axis=0)
else:
data = sosfilt(filter, data, axis=0)
def dataset_add_chunk_col(df, col="data"):
"""add a chunk column to the dataset df"""
df["chunk"] = df.groupby(col).cumcount()
def dataset_add_length_col(df, col="data", data_folder=None):
"""add a length column to the dataset df"""
df[col + "_length"] = df[col].apply(lambda x: len(np.load(x if data_folder is None else data_folder / x)))
def dataset_add_labels_col(df, col="label", data_folder=None):
"""add a column with unique labels in column col"""
df[col + "_labels"] = df[col].apply(
lambda x: list(np.unique(np.load(x if data_folder is None else data_folder / x))))
def dataset_add_mean_col(df, col="data", axis=(0), data_folder=None):
"""adds a column with mean"""
df[col + "_mean"] = df[col].apply(
lambda x: np.mean(np.load(x if data_folder is None else data_folder / x), axis=axis))
def dataset_add_median_col(df, col="data", axis=(0), data_folder=None):
"""adds a column with median"""
df[col + "_median"] = df[col].apply(
lambda x: np.median(np.load(x if data_folder is None else data_folder / x), axis=axis))
def dataset_add_std_col(df, col="data", axis=(0), data_folder=None):
"""adds a column with mean"""
df[col + "_std"] = df[col].apply(
lambda x: np.std(np.load(x if data_folder is None else data_folder / x), axis=axis))
def dataset_add_iqr_col(df, col="data", axis=(0), data_folder=None):
"""adds a column with mean"""
df[col + "_iqr"] = df[col].apply(lambda x: iqr(np.load(x if data_folder is None else data_folder / x), axis=axis))
def dataset_get_stats(df, col="data", median=False):
"""creates weighted means and stds from mean, std and length cols of the df"""
mean = np.average(np.stack(df[col + ("_median" if median is True else "_mean")], axis=0), axis=0,
weights=np.array(df[col + "_length"]))
std = np.average(np.stack(df[col + ("_iqr" if median is True else "_std")], axis=0), axis=0,
weights=np.array(df[col + "_length"]))
return mean, std
def npys_to_memmap(npys, target_filename, delete_npys=False):
memmap = None
start = []
length = []
files = []
ids = []
for idx, npy in enumerate(npys):
data = np.load(npy)
if memmap is None:
memmap = np.memmap(target_filename, dtype=data.dtype, mode='w+', shape=data.shape)
start.append(0)
length.append(data.shape[0])
else:
start.append(start[-1] + length[-1])
length.append(data.shape[0])
memmap = np.memmap(target_filename, dtype=data.dtype, mode='r+',
shape=tuple([start[-1] + length[-1]] + [l for l in data.shape[1:]]))
ids.append(idx)
memmap[start[-1]:start[-1] + length[-1]] = data[:]
memmap.flush()
if delete_npys is True:
npy.unlink()
del memmap
np.savez(target_filename.parent / (target_filename.stem + "_meta.npz"), start=start, length=length,
shape=[start[-1] + length[-1]] + [l for l in data.shape[1:]], dtype=data.dtype)
def reformat_as_memmap(df, target_filename, data_folder=None, annotation=False, delete_npys=False):
npys_data = []
npys_label = []
for id, row in df.iterrows():
npys_data.append(data_folder / row["data"] if data_folder is not None else row["data"])
if annotation:
npys_label.append(data_folder / row["label"] if data_folder is not None else row["label"])
npys_to_memmap(npys_data, target_filename, delete_npys=delete_npys)
if annotation:
npys_to_memmap(npys_label, target_filename.parent / (target_filename.stem + "_label.npy"),
delete_npys=delete_npys)
# replace data(filename) by integer
df_mapped = df.copy()
df_mapped["data_original"] = df_mapped.data
df_mapped["data"] = np.arange(len(df_mapped))
df_mapped.to_pickle(target_filename.parent / ("df_" + target_filename.stem + ".pkl"))
return df_mapped
# TimeseriesDatasetCrops
class TimeseriesDatasetCrops(torch.utils.data.Dataset):
"""timeseries dataset with partial crops."""
def __init__(self, df, output_size, chunk_length, min_chunk_length, memmap_filename=None, npy_data=None,
random_crop=True, data_folder=None, num_classes=2, copies=0, col_lbl="label", stride=None, start_idx=0,
annotation=False, transforms=None):
"""
accepts three kinds of input:
1) filenames pointing to aligned numpy arrays [timesteps,channels,...] for data and either integer labels or filename pointing to numpy arrays[timesteps,...] e.g. for annotations
2) memmap_filename to memmap for data [concatenated,...] and labels- label column in df corresponds to index in this memmap
3) npy_data [samples,ts,...] (either path or np.array directly- also supporting variable length input) - label column in df corresponds to sampleid
transforms: list of callables (transformations) (applied in the specified order i.e. leftmost element first)
"""
if transforms is None:
transforms = []
assert not ((memmap_filename is not None) and (npy_data is not None))
# require integer entries if using memmap or npy
assert (memmap_filename is None and npy_data is None) or df.data.dtype == np.int64
self.timeseries_df = df
self.output_size = output_size
self.data_folder = data_folder
self.transforms = transforms
self.annotation = annotation
self.col_lbl = col_lbl
self.c = num_classes
self.mode = "files"
self.memmap_filename = memmap_filename
if memmap_filename is not None:
self.mode = "memmap"
memmap_meta = np.load(memmap_filename.parent / (memmap_filename.stem + "_meta.npz"))
self.memmap_start = memmap_meta["start"]
self.memmap_shape = tuple(memmap_meta["shape"])
self.memmap_length = memmap_meta["length"]
self.memmap_dtype = np.dtype(str(memmap_meta["dtype"]))
self.memmap_file_process_dict = {}
if annotation:
memmap_meta_label = np.load(memmap_filename.parent / (memmap_filename.stem + "_label_meta.npz"))
self.memmap_filename_label = memmap_filename.parent / (memmap_filename.stem + "_label.npy")
self.memmap_shape_label = tuple(memmap_meta_label["shape"])
self.memmap_file_process_dict_label = {}
self.memmap_dtype_label = np.dtype(str(memmap_meta_label["dtype"]))
elif npy_data is not None:
self.mode = "npy"
if isinstance(npy_data, np.ndarray) or isinstance(npy_data, list):
self.npy_data = np.array(npy_data)
assert (annotation is False)
else:
self.npy_data = np.load(npy_data)
if annotation:
self.npy_data_label = np.load(npy_data.parent / (npy_data.stem + "_label.npy"))
self.random_crop = random_crop
self.df_idx_mapping = []
self.start_idx_mapping = []
self.end_idx_mapping = []
for df_idx, (id, row) in enumerate(df.iterrows()):
if self.mode == "files":
data_length = row["data_length"]
elif self.mode == "memmap":
data_length = self.memmap_length[row["data"]]
else: # npy
data_length = len(self.npy_data[row["data"]])
if chunk_length == 0: # do not split
idx_start = [start_idx]
idx_end = [data_length]
else:
idx_start = list(range(start_idx, data_length, chunk_length if stride is None else stride))
idx_end = [min(l + chunk_length, data_length) for l in idx_start]
# remove final chunk(s) if too short
for i in range(len(idx_start)):
if idx_end[i] - idx_start[i] < min_chunk_length:
del idx_start[i:]
del idx_end[i:]
break
# append to lists
for _ in range(copies + 1):
for i_s, i_e in zip(idx_start, idx_end):
self.df_idx_mapping.append(df_idx)
self.start_idx_mapping.append(i_s)
self.end_idx_mapping.append(i_e)
def __len__(self):
return len(self.df_idx_mapping)
def __getitem__(self, idx):
df_idx = self.df_idx_mapping[idx]
start_idx = self.start_idx_mapping[idx]
end_idx = self.end_idx_mapping[idx]
# determine crop idxs
timesteps = end_idx - start_idx
assert (timesteps >= self.output_size)
if self.random_crop: # random crop
if timesteps == self.output_size:
start_idx_crop = start_idx
else:
start_idx_crop = start_idx + random.randint(0, timesteps - self.output_size - 1) # np.random.randint(0, timesteps - self.output_size)
else:
start_idx_crop = start_idx + (timesteps - self.output_size) // 2
end_idx_crop = start_idx_crop + self.output_size
# print(idx,start_idx,end_idx,start_idx_crop,end_idx_crop)
# load the actual data
if self.mode == "files": # from separate files
data_filename = self.timeseries_df.iloc[df_idx]["data"]
if self.data_folder is not None:
data_filename = self.data_folder / data_filename
data = np.load(data_filename)[
start_idx_crop:end_idx_crop] # data type has to be adjusted when saving to npy
ID = data_filename.stem
if self.annotation is True:
label_filename = self.timeseries_df.iloc[df_idx][self.col_lbl]
if self.data_folder is not None:
label_filename = self.data_folder / label_filename
label = np.load(label_filename)[
start_idx_crop:end_idx_crop] # data type has to be adjusted when saving to npy
else:
label = self.timeseries_df.iloc[df_idx][self.col_lbl] # input type has to be adjusted in the dataframe
elif self.mode == "memmap": # from one memmap file
ID = self.timeseries_df.iloc[df_idx]["data_original"].stem
memmap_idx = self.timeseries_df.iloc[df_idx][
"data"] # grab the actual index (Note the df to create the ds might be a subset of the original df used to create the memmap)
idx_offset = self.memmap_start[memmap_idx]
pid = os.getpid()
# print("idx",idx,"ID",ID,"idx_offset",idx_offset,"start_idx_crop",start_idx_crop,"df_idx", self.df_idx_mapping[idx],"pid",pid)
mem_file = self.memmap_file_process_dict.get(pid, None) # each process owns its handler.
if mem_file is None:
# print("memmap_shape", self.memmap_shape)
mem_file = np.memmap(self.memmap_filename, self.memmap_dtype, mode='r', shape=self.memmap_shape)
self.memmap_file_process_dict[pid] = mem_file
data = np.copy(mem_file[idx_offset + start_idx_crop: idx_offset + end_idx_crop])
# print(mem_file[idx_offset + start_idx_crop: idx_offset + end_idx_crop])
if self.annotation:
mem_file_label = self.memmap_file_process_dict_label.get(pid, None) # each process owns its handler.
if mem_file_label is None:
mem_file_label = np.memmap(self.memmap_filename_label, self.memmap_dtype, mode='r',
shape=self.memmap_shape_label)
self.memmap_file_process_dict_label[pid] = mem_file_label
label = np.copy(mem_file_label[idx_offset + start_idx_crop: idx_offset + end_idx_crop])
else:
label = self.timeseries_df.iloc[df_idx][self.col_lbl]
else: # single npy array
ID = self.timeseries_df.iloc[df_idx]["data"]
data = self.npy_data[ID][start_idx_crop:end_idx_crop]
if self.annotation:
label = self.npy_data_label[ID][start_idx_crop:end_idx_crop]
else:
label = self.timeseries_df.iloc[df_idx][self.col_lbl]
sample = {'data': data, 'label': label, 'ID': ID}
for t in self.transforms:
sample = t(sample)
return sample
def get_sampling_weights(self, class_weight_dict, length_weighting=False, group_by_col=None):
assert (self.annotation is False)
assert (length_weighting is False or group_by_col is None)
weights = np.zeros(len(self.df_idx_mapping), dtype=np.float32)
length_per_class = {}
length_per_group = {}
for iw, (i, s, e) in enumerate(zip(self.df_idx_mapping, self.start_idx_mapping, self.end_idx_mapping)):
label = self.timeseries_df.iloc[i][self.col_lbl]
weight = class_weight_dict[label]
if length_weighting:
if label in length_per_class.keys():
length_per_class[label] += e - s
else:
length_per_class[label] = e - s
if group_by_col is not None:
group = self.timeseries_df.iloc[i][group_by_col]
if group in length_per_group.keys():
length_per_group[group] += e - s
else:
length_per_group[group] = e - s
weights[iw] = weight
if length_weighting: # need second pass to properly take into account the total length per class
for iw, (i, s, e) in enumerate(zip(self.df_idx_mapping, self.start_idx_mapping, self.end_idx_mapping)):
label = self.timeseries_df.iloc[i][self.col_lbl]
weights[iw] = (e - s) / length_per_class[label] * weights[iw]
if group_by_col is not None:
for iw, (i, s, e) in enumerate(zip(self.df_idx_mapping, self.start_idx_mapping, self.end_idx_mapping)):
group = self.timeseries_df.iloc[i][group_by_col]
weights[iw] = (e - s) / length_per_group[group] * weights[iw]
weights = weights / np.min(weights) # normalize smallest weight to 1
return weights
def get_id_mapping(self):
return self.df_idx_mapping
class RandomCrop(object):
"""
Crop randomly the image in a sample (deprecated).
"""
def __init__(self, output_size, annotation=False):
self.output_size = output_size
self.annotation = annotation
def __call__(self, sample):
data, label, ID = sample['data'], sample['label'], sample['ID']
timesteps = len(data)
assert (timesteps >= self.output_size)
if timesteps == self.output_size:
start = 0
else:
start = random.randint(0, timesteps - self.output_size - 1) # np.random.randint(0, timesteps - self.output_size)
data = data[start: start + self.output_size]
if self.annotation:
label = label[start: start + self.output_size]
return {'data': data, 'label': label, "ID": ID}
class CenterCrop(object):
"""
Center crop the image in a sample (deprecated).
"""
def __init__(self, output_size, annotation=False):
self.output_size = output_size
self.annotation = annotation
def __call__(self, sample):
data, label, ID = sample['data'], sample['label'], sample['ID']
timesteps = len(data)
start = (timesteps - self.output_size) // 2
data = data[start: start + self.output_size]
if self.annotation:
label = label[start: start + self.output_size]
return {'data': data, 'label': label, "ID": ID}
class GaussianNoise(object):
"""
Add gaussian noise to sample.
"""
def __init__(self, scale=0.1):
self.scale = scale
def __call__(self, sample):
if self.scale == 0:
return sample
else:
data, label, ID = sample['data'], sample['label'], sample['ID']
data = data + np.reshape(np.array([random.gauss(0, self.scale) for _ in range(np.prod(data.shape))]),
data.shape) # np.random.normal(scale=self.scale,size=data.shape).astype(np.float32)
return {'data': data, 'label': label, "ID": ID}
class Rescale(object):
"""Rescale by factor.
"""
def __init__(self, scale=0.5, interpolation_order=3):
self.scale = scale
self.interpolation_order = interpolation_order
def __call__(self, sample):
if self.scale == 1:
return sample
else:
data, label, ID = sample['data'], sample['label'], sample['ID']
timesteps_new = int(self.scale * len(data))
data = transform.resize(data, (timesteps_new, data.shape[1]), order=self.interpolation_order).astype(
np.float32)
return {'data': data, 'label': label, "ID": ID}
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __init__(self, transpose_data1d=True):
self.transpose_data1d = transpose_data1d
def __call__(self, sample):
def _to_tensor(data, transpose_data1d=False):
if (
len(data.shape) == 2 and transpose_data1d is True): # swap channel and time axis for direct application of pytorch's 1d convs
data = data.transpose((1, 0))
if isinstance(data, np.ndarray):
return torch.from_numpy(data)
else: # default_collate will take care of it
return data
data, label, ID = sample['data'], sample['label'], sample['ID']
if not isinstance(data, tuple):
data = _to_tensor(data, self.transpose_data1d)
else:
data = tuple(_to_tensor(x, self.transpose_data1d) for x in data)
if not isinstance(label, tuple):
label = _to_tensor(label)
else:
label = tuple(_to_tensor(x) for x in label)
return data, label # returning as a tuple (potentially of lists)
class Normalize(object):
"""
Normalize using given stats.
"""
def __init__(self, stats_mean, stats_std, input=True, channels=None):
if channels is None:
channels = []
self.stats_mean = np.expand_dims(stats_mean.astype(np.float32), axis=0) if stats_mean is not None else None
self.stats_std = np.expand_dims(stats_std.astype(np.float32), axis=0) + 1e-8 if stats_std is not None else None
self.input = input
if len(channels) > 0:
for i in range(len(stats_mean)):
if not (i in channels):
self.stats_mean[:, i] = 0
self.stats_std[:, i] = 1
def __call__(self, sample):
if self.input:
data = sample['data']
else:
data = sample['label']
if self.stats_mean is not None:
data = data - self.stats_mean
if self.stats_std is not None:
data = data / self.stats_std
if self.input:
return {'data': data, 'label': sample['label'], "ID": sample['ID']}
else:
return {'data': sample['data'], 'label': data, "ID": sample['ID']}
class ButterFilter(object):
"""
Normalize using given stats.
"""
def __init__(self, lowcut=50, highcut=50, fs=100, order=5, btype='band', forwardbackward=True, input=True):
self.filter = butter_filter(lowcut, highcut, fs, order, btype)
self.input = input
self.forwardbackward = forwardbackward
def __call__(self, sample):
if self.input:
data = sample['data']
else:
data = sample['label']
# check multiple axis
if self.forwardbackward:
data = sosfiltfilt(self.filter, data, axis=0)
else:
data = sosfilt(self.filter, data, axis=0)
if self.input:
return {'data': data, 'label': sample['label'], "ID": sample['ID']}
else:
return {'data': sample['data'], 'label': data, "ID": sample['ID']}
class ChannelFilter(object):
"""
Select certain channels.
"""
def __init__(self, channels=None, input=True):
if channels is None:
channels = [0]
self.channels = channels
self.input = input
def __call__(self, sample):
if self.input:
return {'data': sample['data'][:, self.channels], 'label': sample['label'], "ID": sample['ID']}
else:
return {'data': sample['data'], 'label': sample['label'][:, self.channels], "ID": sample['ID']}
class Transform(object):
"""
Transforms data using a given function i.e. data_new = func(data) for input is True else label_new = func(label)
"""
def __init__(self, func, input=False):
self.func = func
self.input = input
def __call__(self, sample):
if self.input:
return {'data': self.func(sample['data']), 'label': sample['label'], "ID": sample['ID']}
else:
return {'data': sample['data'], 'label': self.func(sample['label']), "ID": sample['ID']}
class TupleTransform(object):
"""
Transforms data using a given function (operating on both data and label and return a tuple) i.e. data_new, label_new = func(data_old, label_old)
"""
def __init__(self, func, input=False):
self.func = func
def __call__(self, sample):
data_new, label_new = self.func(sample['data'], sample['label'])
return {'data': data_new, 'label': label_new, "ID": sample['ID']}
# MIL and ensemble models
def aggregate_predictions(preds, targs=None, idmap=None, aggregate_fn=np.mean, verbose=True):
"""
aggregates potentially multiple predictions per sample (can also pass targs for convenience)
idmap: idmap as returned by TimeSeriesCropsDataset's get_id_mapping
preds: ordered predictions as returned by learn.get_preds()
aggregate_fn: function that is used to aggregate multiple predictions per sample (most commonly np.amax or np.mean)
"""
if idmap is not None and len(idmap) != len(np.unique(idmap)):
if verbose:
print("aggregating predictions...")
preds_aggregated = []
targs_aggregated = []
for i in np.unique(idmap):
preds_local = preds[np.where(idmap == i)[0]]
preds_aggregated.append(aggregate_fn(preds_local, axis=0))
if targs is not None:
targs_local = targs[np.where(idmap == i)[0]]
assert (np.all(targs_local == targs_local[0])) # all labels have to agree
targs_aggregated.append(targs_local[0])
if targs is None:
return np.array(preds_aggregated)
else:
return np.array(preds_aggregated), np.array(targs_aggregated)
else:
if targs is None:
return preds
else:
return preds, targs
class milwrapper(nn.Module):
def __init__(self, model, input_size, n, stride=None, softmax=True):
super().__init__()
self.n = n
self.input_size = input_size
self.model = model
self.softmax = softmax
self.stride = input_size if stride is None else stride
def forward(self, x):
# bs,ch,seq
for i in range(self.n):
pred_single = self.model(x[:, :, i * self.stride:i * self.stride + self.input_size])
pred_single = nn.functional.softmax(pred_single, dim=1)
if i == 0:
pred = pred_single
else:
pred += pred_single
return pred / self.n
class ensemblewrapper(nn.Module):
def __init__(self, model, checkpts):
super().__init__()
self.model = model
self.checkpts = checkpts
def forward(self, x):
# bs,ch,seq
for i, c in enumerate(self.checkpts):
state = torch.load(Path("./models/") / f'{c}.pth', map_location=x.device)
self.model.load_state_dict(state['model'], strict=True)
pred_single = self.model(x)
pred_single = nn.functional.softmax(pred_single, dim=1)
if (i == 0):
pred = pred_single
else:
pred += pred_single
return pred / len(self.checkpts) |