Nayefleb commited on
Commit
041508c
·
verified ·
1 Parent(s): e1cf112

Upload folder using huggingface_hub

Browse files
LICENSE.md ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
ORIGINAL_README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Automated ECG Interpretation
2
+
3
+ [![Contributors][contributors-shield]][contributors-url]
4
+ [![GitHub forks](https://img.shields.io/github/forks/AutoECG/Automated-ECG-Interpretation?color=lightgray&style=flat-square)](https://github.com/AutoECG/Automated-ECG-Interpretation/network)
5
+ [![GitHub stars](https://img.shields.io/github/stars/AutoECG/Automated-ECG-Interpretation?color=yellow&style=flat-square)](https://github.com/AutoECG/Automated-ECG-Interpretation/stargazers)
6
+ [![GitHub issues](https://img.shields.io/github/issues/AutoECG/Automated-ECG-Interpretation?color=red&style=flat-square)](https://github.com/AutoECG/Automated-ECG-Interpretation/issues)
7
+
8
+ <br>
9
+
10
+ <div align="center">
11
+ <img src="https://user-images.githubusercontent.com/46399191/191921241-495090db-a088-46b6-bd09-0f7f21170b0a.png" height="350"/>
12
+ </div>
13
+
14
+ ## Summary
15
+
16
+ Electrocardiography (ECG) is a key diagnostic tool to assess the cardiac condition of a patient. Automatic ECG interpretation algorithms as diagnosis support systems promise large reliefs for the medical personnel - only based on the number of ECGs that are routinely taken. However, the development of such algorithms requires large training datasets and clear benchmark procedures.
17
+
18
+ ## Data Description
19
+
20
+ The [PTB-XL ECG dataset](https://physionet.org/content/ptb-xl/1.0.1/) is a large dataset of 21837 clinical 12-lead ECGs from 18885 patients of 10 second length. The raw waveform data was annotated by up to two cardiologists, who assigned potentially multiple ECG statements to each record. In total 71 different ECG statements conform to the SCP-ECG standard and cover diagnostic, form, and rhythm statements. Combined with the extensive annotation, this turns the dataset into a rich resource for training and evaluating automatic ECG interpretation algorithms. The dataset is complemented by extensive metadata on demographics, infarction characteristics, likelihoods for diagnostic ECG statements, and annotated signal properties.
21
+
22
+ In general, the dataset is organized as follows:
23
+
24
+ ```
25
+ ptbxl
26
+ ├── ptbxl_database.csv
27
+ ├── scp_statements.csv
28
+ ├── records100
29
+ ├── 00000
30
+ │ │ ├── 00001_lr.dat
31
+ │ │ ├── 00001_lr.hea
32
+ │ │ ├── ...
33
+ │ │ ├── 00999_lr.dat
34
+ │ │ └── 00999_lr.hea
35
+ │ ├── ...
36
+ │ └── 21000
37
+ │ ├── 21001_lr.dat
38
+ │ ├── 21001_lr.hea
39
+ │ ├── ...
40
+ │ ├── 21837_lr.dat
41
+ │ └── 21837_lr.hea
42
+ └── records500
43
+ ├── 00000
44
+ │ ├── 00001_hr.dat
45
+ │ ├── 00001_hr.hea
46
+ │ ├── ...
47
+ │ ├── 00999_hr.dat
48
+ │ └── 00999_hr.hea
49
+ ├── ...
50
+ └── 21000
51
+ ├── 21001_hr.dat
52
+ ├── 21001_hr.hea
53
+ ├── ...
54
+ ├── 21837_hr.dat
55
+ └── 21837_hr.hea
56
+ ```
57
+
58
+ The dataset comprises 21837 clinical 12-lead ECG records of 10 seconds length from 18885 patients, where 52% are male and 48% are female with ages covering the whole range from 0 to 95 years (median 62 and interquantile range of 22). The value of the dataset results from the comprehensive collection of many different co-occurring pathologies, but also from a large proportion of healthy control samples.
59
+
60
+ | Records | Superclass | Description |
61
+ |:---|:---|:---|
62
+ 9528 | NORM | Normal ECG |
63
+ 5486 | MI | Myocardial Infarction |
64
+ 5250 | STTC | ST/T Change |
65
+ 4907 | CD | Conduction Disturbance |
66
+ 2655 | HYP | Hypertrophy |
67
+
68
+ The waveform files are stored in WaveForm DataBase (WFDB) format with 16-bit precision at a resolution of 1μV/LSB and a sampling frequency of 500Hz (records500/) beside downsampled versions of the waveform data at a sampling frequency of 100Hz (records100/).
69
+
70
+ All relevant metadata is stored in ptbxldatabase.csv with one row per record identified by ecgid and it contains 28 columns.
71
+
72
+ All information related to the used annotation scheme is stored in a dedicated scp_statements.csv that was enriched with mappings to other annotation standards.
73
+
74
+ ## Setup
75
+
76
+ ### Install dependencies
77
+ Install the dependencies (wfdb, pytorch, torchvision, cudatoolkit, fastai, fastprogress) by creating a conda environment:
78
+
79
+ conda env create -f requirements.yml
80
+ conda activate autoecg_env
81
+
82
+ ### Get data
83
+ Download the dataset (PTB-XL) via the follwing bash-script:
84
+
85
+ get_dataset.sh
86
+
87
+ This script first downloads [PTB-XL from PhysioNet](https://physionet.org/content/ptb-xl/) and stores it in `data/ptbxl/`.
88
+
89
+ ## Usage
90
+
91
+ python main.py
92
+
93
+ This will perform all experiments for inception1d.
94
+ Depending on the executing environment, this will take up to several hours.
95
+ Once finished, all trained models, predictions and results are stored in `output/`,
96
+ where for each experiment a sub-folder is created each with `data/`, `models/` and `results/` sub-sub-folders.
97
+
98
+ | Model | AUC &darr; | Experiment |
99
+ |:---|:---|:---|
100
+ | inception1d | 0.927(00) | All statements |
101
+ | inception1d | 0.929(00) | Diagnostic statements |
102
+ | inception1d | 0.926(00) | Diagnostic subclasses |
103
+ | inception1d | 0.919(00) | Diagnostic superclasses |
104
+ | inception1d | 0.883(00) | Form statements |
105
+ | inception1d | 0.949(00) | Rhythm statements |
106
+
107
+ ### Download model and results
108
+
109
+ We also provide a [compressed zip-archive](https://drive.google.com/drive/folders/17za6IanRm7rpb1ZGHLQ80mJvBj_53LXJ?usp=sharing) containing the `output` folder corresponding to our runs including trained model and predictions.
110
+
111
+ ## Results for Inception1d Model
112
+
113
+ | Experiment name | Accuracy | Precision | Recall | F1_Score | Specificity |
114
+ | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- |
115
+ | All | 0.9792 | 0.8949 | 0.1408 | 0.4824 | 0.9921 |
116
+ | Diagnostic | 0.9806 | 0.8440 | 0.1556 | 0.4746 | 0.9952 |
117
+ | Sub-Diagnostic | 0.9660 | 0.8315 | 0.3021 | 0.5119 | 0.9887 |
118
+ | Super-Diagnostic | 0.8847 | 0.7938 | 0.6757 | 0.7157 | 0.9251 |
119
+ | Form | 0.9452 | 0.5619 | 0.1420 | 0.3843 | 0.9916 |
120
+ | Rhythm | 0.9844 | 0.7676 | 0.4489 | 0.7290 | 0.9722 |
121
+
122
+ For more evaluation (Confusion Matrix, ROC curve) information and visualizations visit: [Model Evaluation](https://github.com/AutoECG/Automated-ECG-Interpretation/blob/main/evaluation/Model_Evaluation.ipynb)
123
+
124
+ ## Contribution
125
+
126
+ Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are **greatly appreciated**.
127
+
128
+ If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement".
129
+ Don't forget to give the project a star! Thanks again!
130
+
131
+ 1. [Fork the Project](https://github.com/AutoECG/Automated-ECG-Interpretation/fork)
132
+ 2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
133
+ 3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
134
+ 4. Push to the Branch (`git push origin feature/AmazingFeature`)
135
+ 5. Open a Pull Request
136
+
137
+ ## Future Works
138
+
139
+ 1. Model Deployment.
140
+ 2. Continue Preprocessing new ECG data from hospitals to test model reliability and accuracy.
141
+ 3. Figure out different parsing options for xml ecg files from different ECG machines versions.
142
+
143
+
144
+ ## Contact
145
+
146
+ Feel free to reach out to us:
147
+ - DM [Zaki Kurdya](https://twitter.com/ZakiKurdya)
148
+ - DM [Zeina Saadeddin](https://twitter.com/jszeina)
149
+ - DM [Salam Thabit](https://twitter.com/salamThabetDo)
150
+
151
+ <!-- MARKDOWN LINKS -->
152
+ [contributors-shield]: https://img.shields.io/github/contributors/AutoECG/Automated-ECG-Interpretation.svg?style=flat-square&color=blue
153
+ [contributors-url]: https://github.com/AutoECG/Automated-ECG-Interpretation/graphs/contributors
configurations/fastai_configs.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ conf_fastai_resnet1d18 = {'model_name': 'fastai_resnet1d18', 'model_type': 'FastaiModel',
2
+ 'parameters': dict()}
3
+
4
+ conf_fastai_resnet1d34 = {'model_name': 'fastai_resnet1d34', 'model_type': 'FastaiModel',
5
+ 'parameters': dict()}
6
+
7
+ conf_fastai_resnet1d50 = {'model_name': 'fastai_resnet1d50', 'model_type': 'FastaiModel',
8
+ 'parameters': dict()}
9
+
10
+ conf_fastai_resnet1d101 = {'model_name': 'fastai_resnet1d101', 'model_type': 'FastaiModel',
11
+ 'parameters': dict()}
12
+
13
+ conf_fastai_resnet1d152 = {'model_name': 'fastai_resnet1d152', 'model_type': 'FastaiModel',
14
+ 'parameters': dict()}
15
+
16
+ conf_fastai_resnet1d_wang = {'model_name': 'fastai_resnet1d_wang', 'model_type': 'FastaiModel',
17
+ 'parameters': dict()}
18
+
19
+ conf_fastai_wrn1d_22 = {'model_name': 'fastai_wrn1d_22', 'model_type': 'FastaiModel',
20
+ 'parameters': dict()}
21
+
22
+ conf_fastai_xresnet1d18 = {'model_name': 'fastai_xresnet1d18', 'model_type': 'FastaiModel',
23
+ 'parameters': dict()}
24
+
25
+ conf_fastai_xresnet1d34 = {'model_name': 'fastai_xresnet1d34', 'model_type': 'FastaiModel',
26
+ 'parameters': dict()}
27
+
28
+ conf_fastai_xresnet1d50 = {'model_name': 'fastai_xresnet1d50', 'model_type': 'FastaiModel',
29
+ 'parameters': dict()}
30
+
31
+ # more xresnet50s
32
+ conf_fastai_xresnet1d50_ep30 = {'model_name': 'fastai_xresnet1d50_ep30', 'model_type': 'FastaiModel',
33
+ 'parameters': dict(epochs=30)}
34
+
35
+ conf_fastai_xresnet1d50_validloss_ep30 = {'model_name': 'fastai_xresnet1d50_validloss_ep30',
36
+ 'model_type': 'FastaiModel',
37
+ 'parameters': dict(early_stopping="valid_loss", epochs=30)}
38
+
39
+ conf_fastai_xresnet1d50_macroauc_ep30 = {'model_name': 'fastai_xresnet1d50_macroauc_ep30', 'model_type': 'FastaiModel',
40
+ 'parameters': dict(early_stopping="macro_auc", epochs=30)}
41
+
42
+ conf_fastai_xresnet1d50_fmax_ep30 = {'model_name': 'fastai_xresnet1d50_fmax_ep30', 'model_type': 'FastaiModel',
43
+ 'parameters': dict(early_stopping="fmax", epochs=30)}
44
+
45
+ conf_fastai_xresnet1d50_ep50 = {'model_name': 'fastai_xresnet1d50_ep50', 'model_type': 'FastaiModel',
46
+ 'parameters': dict(epochs=50)}
47
+
48
+ conf_fastai_xresnet1d50_validloss_ep50 = {'model_name': 'fastai_xresnet1d50_validloss_ep50',
49
+ 'model_type': 'FastaiModel',
50
+ 'parameters': dict(early_stopping="valid_loss", epochs=50)}
51
+
52
+ conf_fastai_xresnet1d50_macroauc_ep50 = {'model_name': 'fastai_xresnet1d50_macroauc_ep50', 'model_type': 'FastaiModel',
53
+ 'parameters': dict(early_stopping="macro_auc", epochs=50)}
54
+
55
+ conf_fastai_xresnet1d50_fmax_ep50 = {'model_name': 'fastai_xresnet1d50_fmax_ep50', 'model_type': 'FastaiModel',
56
+ 'parameters': dict(early_stopping="fmax", epochs=50)}
57
+
58
+ conf_fastai_xresnet1d101 = {'model_name': 'fastai_xresnet1d101', 'model_type': 'FastaiModel',
59
+ 'parameters': dict()}
60
+
61
+ conf_fastai_xresnet1d152 = {'model_name': 'fastai_xresnet1d152', 'model_type': 'FastaiModel',
62
+ 'parameters': dict()}
63
+
64
+ conf_fastai_xresnet1d18_deep = {'model_name': 'fastai_xresnet1d18_deep', 'model_type': 'FastaiModel',
65
+ 'parameters': dict()}
66
+
67
+ conf_fastai_xresnet1d34_deep = {'model_name': 'fastai_xresnet1d34_deep', 'model_type': 'FastaiModel',
68
+ 'parameters': dict()}
69
+
70
+ conf_fastai_xresnet1d50_deep = {'model_name': 'fastai_xresnet1d50_deep', 'model_type': 'FastaiModel',
71
+ 'parameters': dict()}
72
+
73
+ conf_fastai_xresnet1d18_deeper = {'model_name': 'fastai_xresnet1d18_deeper', 'model_type': 'FastaiModel',
74
+ 'parameters': dict()}
75
+
76
+ conf_fastai_xresnet1d34_deeper = {'model_name': 'fastai_xresnet1d34_deeper', 'model_type': 'FastaiModel',
77
+ 'parameters': dict()}
78
+
79
+ conf_fastai_xresnet1d50_deeper = {'model_name': 'fastai_xresnet1d50_deeper', 'model_type': 'FastaiModel',
80
+ 'parameters': dict()}
81
+
82
+ conf_fastai_inception1d = {'model_name': 'fastai_inception1d', 'model_type': 'FastaiModel',
83
+ 'parameters': dict()}
84
+
85
+ conf_fastai_inception1d_input256 = {'model_name': 'fastai_inception1d_input256', 'model_type': 'FastaiModel',
86
+ 'parameters': dict(input_size=256)}
87
+
88
+ conf_fastai_inception1d_input512 = {'model_name': 'fastai_inception1d_input512', 'model_type': 'FastaiModel',
89
+ 'parameters': dict(input_size=512)}
90
+
91
+ conf_fastai_inception1d_input1000 = {'model_name': 'fastai_inception1d_input1000', 'model_type': 'FastaiModel',
92
+ 'parameters': dict(input_size=1000)}
93
+
94
+ conf_fastai_inception1d_no_residual = {'model_name': 'fastai_inception1d_no_residual', 'model_type': 'FastaiModel',
95
+ 'parameters': dict()}
96
+
97
+ conf_fastai_fcn = {'model_name': 'fastai_fcn', 'model_type': 'FastaiModel',
98
+ 'parameters': dict()}
99
+
100
+ conf_fastai_fcn_wang = {'model_name': 'fastai_fcn_wang', 'model_type': 'FastaiModel',
101
+ 'parameters': dict()}
102
+
103
+ conf_fastai_schirrmeister = {'model_name': 'fastai_schirrmeister', 'model_type': 'FastaiModel',
104
+ 'parameters': dict()}
105
+
106
+ conf_fastai_sen = {'model_name': 'fastai_sen', 'model_type': 'FastaiModel',
107
+ 'parameters': dict()}
108
+
109
+ conf_fastai_basic1d = {'model_name': 'fastai_basic1d', 'model_type': 'FastaiModel',
110
+ 'parameters': dict()}
111
+
112
+ conf_fastai_lstm = {'model_name': 'fastai_lstm', 'model_type': 'FastaiModel',
113
+ 'parameters': dict(lr=1e-3)}
114
+
115
+ conf_fastai_gru = {'model_name': 'fastai_gru', 'model_type': 'FastaiModel',
116
+ 'parameters': dict(lr=1e-3)}
117
+
118
+ conf_fastai_lstm_bidir = {'model_name': 'fastai_lstm_bidir', 'model_type': 'FastaiModel',
119
+ 'parameters': dict(lr=1e-3)}
120
+
121
+ conf_fastai_gru_bidir = {'model_name': 'fastai_gru', 'model_type': 'FastaiModel',
122
+ 'parameters': dict(lr=1e-3)}
123
+
124
+ conf_fastai_lstm_input1000 = {'model_name': 'fastai_lstm_input1000', 'model_type': 'FastaiModel',
125
+ 'parameters': dict(input_size=1000, lr=1e-3)}
126
+
127
+ conf_fastai_gru_input1000 = {'model_name': 'fastai_gru_input1000', 'model_type': 'FastaiModel',
128
+ 'parameters': dict(input_size=1000, lr=1e-3)}
129
+
130
+ conf_fastai_schirrmeister_input500 = {'model_name': 'fastai_schirrmeister_input500', 'model_type': 'FastaiModel',
131
+ 'parameters': dict(input_size=500)}
132
+
133
+ conf_fastai_inception1d_input500 = {'model_name': 'fastai_inception1d_input500', 'model_type': 'FastaiModel',
134
+ 'parameters': dict(input_size=500)}
135
+
136
+ conf_fastai_fcn_wang_input500 = {'model_name': 'fastai_fcn_wang_input500', 'model_type': 'FastaiModel',
137
+ 'parameters': dict(input_size=500)}
configurations/wavelet_configs.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ conf_wavelet_standard_lr = {'model_name': 'Wavelet+LR', 'model_type': 'WAVELET',
2
+ 'parameters': dict(
3
+ regularizer_C=.001,
4
+ classifier='LR'
5
+ )}
6
+
7
+ conf_wavelet_standard_rf = {'model_name': 'Wavelet+RF', 'model_type': 'WAVELET',
8
+ 'parameters': dict(
9
+ regularizer_C=.001,
10
+ classifier='RF'
11
+ )}
12
+
13
+ conf_wavelet_standard_nn = {'model_name': 'Wavelet+NN', 'model_type': 'WAVELET',
14
+ 'parameters': dict(
15
+ regularizer_C=.001,
16
+ classifier='NN'
17
+ )}
evaluation/Model_Evaluation.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
experiments/scp_experiment.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import multiprocessing
2
+ from itertools import repeat
3
+
4
+ from models import fastaiModel
5
+ from models.wavelet import WaveletModel
6
+ from utilities.utils import *
7
+
8
+
9
+ class SCPExperiment:
10
+ """
11
+ Experiment on SCP-ECG statements.
12
+ All experiments based on SCP are performed and evaluated the same way.
13
+ """
14
+
15
+ def __init__(self, experiment_name, task, data_folder, output_folder, models,
16
+ sampling_frequency=100, min_samples=0, train_fold=8, val_fold=9,
17
+ test_fold=10, folds_type='strat'):
18
+ self.models = models
19
+ self.min_samples = min_samples
20
+ self.task = task
21
+ self.train_fold = train_fold
22
+ self.val_fold = val_fold
23
+ self.test_fold = test_fold
24
+ self.folds_type = folds_type
25
+ self.experiment_name = experiment_name
26
+ self.output_folder = output_folder
27
+ self.data_folder = data_folder
28
+ self.sampling_frequency = sampling_frequency
29
+
30
+ # create folder structure if needed
31
+ if not os.path.exists(self.output_folder + self.experiment_name):
32
+ os.makedirs(self.output_folder + self.experiment_name)
33
+ if not os.path.exists(self.output_folder + self.experiment_name + '/results/'):
34
+ os.makedirs(self.output_folder + self.experiment_name + '/results/')
35
+ if not os.path.exists(output_folder + self.experiment_name + '/models/'):
36
+ os.makedirs(self.output_folder + self.experiment_name + '/models/')
37
+ if not os.path.exists(output_folder + self.experiment_name + '/data/'):
38
+ os.makedirs(self.output_folder + self.experiment_name + '/data/')
39
+
40
+ def prepare(self):
41
+ # Load PTB-XL data
42
+ self.data, self.raw_labels = load_dataset(self.data_folder, self.sampling_frequency)
43
+
44
+ # Preprocess label data
45
+ self.labels = compute_label_aggregations(self.raw_labels, self.data_folder, self.task)
46
+
47
+ # Select relevant data and convert to one-hot
48
+ self.data, self.labels, self.Y, _ = select_data(self.data, self.labels, self.task, self.min_samples,
49
+ self.output_folder + self.experiment_name + '/data/')
50
+ self.input_shape = self.data[0].shape
51
+
52
+ # 10th fold for testing (9th for now)
53
+ self.X_test = self.data[self.labels.strat_fold == self.test_fold]
54
+ self.y_test = self.Y[self.labels.strat_fold == self.test_fold]
55
+ # 9th fold for validation (8th for now)
56
+ self.X_val = self.data[self.labels.strat_fold == self.val_fold]
57
+ self.y_val = self.Y[self.labels.strat_fold == self.val_fold]
58
+ # rest for training
59
+ self.X_train = self.data[self.labels.strat_fold <= self.train_fold]
60
+ self.y_train = self.Y[self.labels.strat_fold <= self.train_fold]
61
+
62
+ # Preprocess signal data
63
+ self.X_train, self.X_val, self.X_test = preprocess_signals(self.X_train, self.X_val, self.X_test,
64
+ self.output_folder + self.experiment_name + '/data/')
65
+ self.n_classes = self.y_train.shape[1]
66
+
67
+ # save train and test labels
68
+ self.y_train.dump(self.output_folder + self.experiment_name + '/data/y_train.npy')
69
+ self.y_val.dump(self.output_folder + self.experiment_name + '/data/y_val.npy')
70
+ self.y_test.dump(self.output_folder + self.experiment_name + '/data/y_test.npy')
71
+
72
+ model_name = 'naive'
73
+ # create most naive predictions via simple mean in training
74
+ mpath = self.output_folder + self.experiment_name + '/models/' + model_name + '/'
75
+ # create folder for model outputs
76
+ if not os.path.exists(mpath):
77
+ os.makedirs(mpath)
78
+ if not os.path.exists(mpath + 'results/'):
79
+ os.makedirs(mpath + 'results/')
80
+
81
+ mean_y = np.mean(self.y_train, axis=0)
82
+ np.array([mean_y] * len(self.y_train)).dump(mpath + 'y_train_pred.npy')
83
+ np.array([mean_y] * len(self.y_test)).dump(mpath + 'y_test_pred.npy')
84
+ np.array([mean_y] * len(self.y_val)).dump(mpath + 'y_val_pred.npy')
85
+
86
+ def perform(self):
87
+ for model_description in self.models:
88
+ model_name = model_description['model_name']
89
+ model_type = model_description['model_type']
90
+ model_params = model_description['parameters']
91
+
92
+ mpath = self.output_folder + self.experiment_name + '/models/' + model_name + '/'
93
+ # create folder for model outputs
94
+ if not os.path.exists(mpath):
95
+ os.makedirs(mpath)
96
+ if not os.path.exists(mpath + 'results/'):
97
+ os.makedirs(mpath + 'results/')
98
+
99
+ n_classes = self.Y.shape[1]
100
+ # load respective model
101
+ if model_type == 'WAVELET':
102
+ model = WaveletModel(model_name, n_classes, self.sampling_frequency, mpath, self.input_shape,
103
+ **model_params)
104
+ elif model_type == "FastaiModel":
105
+ model = fastaiModel.FastaiModel(model_name, n_classes, self.sampling_frequency, mpath, self.input_shape,
106
+ **model_params)
107
+ else:
108
+ assert True
109
+ break
110
+
111
+ # fit model
112
+ model.fit(self.X_train, self.y_train, self.X_val, self.y_val)
113
+ # predict and dump
114
+ model.predict(self.X_train).dump(mpath + 'y_train_pred.npy')
115
+ model.predict(self.X_val).dump(mpath + 'y_val_pred.npy')
116
+ model.predict(self.X_test).dump(mpath + 'y_test_pred.npy')
117
+
118
+ model_name = 'ensemble'
119
+ # create ensemble predictions via simple mean across model predictions (except naive predictions)
120
+ ensemblepath = self.output_folder + self.experiment_name + '/models/' + model_name + '/'
121
+ # create folder for model outputs
122
+ if not os.path.exists(ensemblepath):
123
+ os.makedirs(ensemblepath)
124
+ if not os.path.exists(ensemblepath + 'results/'):
125
+ os.makedirs(ensemblepath + 'results/')
126
+ # load all predictions
127
+ ensemble_train, ensemble_val, ensemble_test = [], [], []
128
+ for model_description in os.listdir(self.output_folder + self.experiment_name + '/models/'):
129
+ if not model_description in ['ensemble', 'naive']:
130
+ mpath = self.output_folder + self.experiment_name + '/models/' + model_description + '/'
131
+ ensemble_train.append(np.load(mpath + 'y_train_pred.npy', allow_pickle=True))
132
+ ensemble_val.append(np.load(mpath + 'y_val_pred.npy', allow_pickle=True))
133
+ ensemble_test.append(np.load(mpath + 'y_test_pred.npy', allow_pickle=True))
134
+ # dump mean predictions
135
+ np.array(ensemble_train).mean(axis=0).dump(ensemblepath + 'y_train_pred.npy')
136
+ np.array(ensemble_test).mean(axis=0).dump(ensemblepath + 'y_test_pred.npy')
137
+ np.array(ensemble_val).mean(axis=0).dump(ensemblepath + 'y_val_pred.npy')
138
+
139
+ def evaluate(self, n_bootstraping_samples=100, n_jobs=20, bootstrap_eval=False, dumped_bootstraps=True):
140
+ # get labels
141
+ global train_samples, val_samples
142
+ y_train = np.load(self.output_folder + self.experiment_name + '/data/y_train.npy', allow_pickle=True)
143
+ y_val = np.load(self.output_folder + self.experiment_name + '/data/y_val.npy', allow_pickle=True)
144
+ y_test = np.load(self.output_folder + self.experiment_name + '/data/y_test.npy', allow_pickle=True)
145
+
146
+ # if bootstrapping then generate appropriate samples for each
147
+ if bootstrap_eval:
148
+ if not dumped_bootstraps:
149
+ train_samples = np.array(get_appropriate_bootstrap_samples(y_train, n_bootstraping_samples))
150
+ test_samples = np.array(get_appropriate_bootstrap_samples(y_test, n_bootstraping_samples))
151
+ val_samples = np.array(get_appropriate_bootstrap_samples(y_val, n_bootstraping_samples))
152
+ else:
153
+ test_samples = np.load(self.output_folder + self.experiment_name + '/test_bootstrap_ids.npy',
154
+ allow_pickle=True)
155
+ else:
156
+ train_samples = np.array([range(len(y_train))])
157
+ test_samples = np.array([range(len(y_test))])
158
+ val_samples = np.array([range(len(y_val))])
159
+
160
+ # store samples for future evaluations
161
+ train_samples.dump(self.output_folder + self.experiment_name + '/train_bootstrap_ids.npy')
162
+ test_samples.dump(self.output_folder + self.experiment_name + '/test_bootstrap_ids.npy')
163
+ val_samples.dump(self.output_folder + self.experiment_name + '/val_bootstrap_ids.npy')
164
+
165
+ # iterate over all models fitted so far
166
+ for m in sorted(os.listdir(self.output_folder + self.experiment_name + '/models')):
167
+ print(m)
168
+ mpath = self.output_folder + self.experiment_name + '/models/' + m + '/'
169
+ rpath = self.output_folder + self.experiment_name + '/models/' + m + '/results/'
170
+
171
+ # load predictions
172
+ y_train_pred = np.load(mpath + 'y_train_pred.npy', allow_pickle=True)
173
+ y_val_pred = np.load(mpath + 'y_val_pred.npy', allow_pickle=True)
174
+ y_test_pred = np.load(mpath + 'y_test_pred.npy', allow_pickle=True)
175
+
176
+ if self.experiment_name == 'exp_ICBEB':
177
+ # compute classwise thresholds such that recall-focused Gbeta is optimized
178
+ thresholds = find_optimal_cutoff_thresholds_for_Gbeta(y_train, y_train_pred)
179
+ else:
180
+ thresholds = None
181
+
182
+ pool = multiprocessing.Pool(n_jobs)
183
+
184
+ tr_df = pd.concat(pool.starmap(generate_results,
185
+ zip(train_samples, repeat(y_train), repeat(y_train_pred),
186
+ repeat(thresholds))))
187
+ tr_df_point = generate_results(range(len(y_train)), y_train, y_train_pred, thresholds)
188
+ tr_df_result = pd.DataFrame(
189
+ np.array([
190
+ tr_df_point.mean().values,
191
+ tr_df.mean().values,
192
+ tr_df.quantile(0.05).values,
193
+ tr_df.quantile(0.95).values]),
194
+ columns=tr_df.columns,
195
+ index=['point', 'mean', 'lower', 'upper'])
196
+
197
+ te_df = pd.concat(pool.starmap(generate_results,
198
+ zip(test_samples, repeat(y_test), repeat(y_test_pred), repeat(thresholds))))
199
+ te_df_point = generate_results(range(len(y_test)), y_test, y_test_pred, thresholds)
200
+ te_df_result = pd.DataFrame(
201
+ np.array([
202
+ te_df_point.mean().values,
203
+ te_df.mean().values,
204
+ te_df.quantile(0.05).values,
205
+ te_df.quantile(0.95).values]),
206
+ columns=te_df.columns,
207
+ index=['point', 'mean', 'lower', 'upper'])
208
+
209
+ val_df = pd.concat(pool.starmap(generate_results,
210
+ zip(val_samples, repeat(y_val), repeat(y_val_pred), repeat(thresholds))))
211
+ val_df_point = generate_results(range(len(y_val)), y_val, y_val_pred, thresholds)
212
+ val_df_result = pd.DataFrame(
213
+ np.array([
214
+ val_df_point.mean().values,
215
+ val_df.mean().values,
216
+ val_df.quantile(0.05).values,
217
+ val_df.quantile(0.95).values]),
218
+ columns=val_df.columns,
219
+ index=['point', 'mean', 'lower', 'upper'])
220
+
221
+ pool.close()
222
+
223
+ # dump results
224
+ tr_df_result.to_csv(rpath + 'tr_results.csv')
225
+ val_df_result.to_csv(rpath + 'val_results.csv')
226
+ te_df_result.to_csv(rpath + 'te_results.csv')
exploratory_data_analysis/AutoECG_EDA.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
get_dataset.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ ####################################
4
+ # GET PTB-XL DATABASE
5
+ ####################################
6
+
7
+ mkdir -p data
8
+ cd data || return
9
+ wget https://storage.googleapis.com/ptb-xl-1.0.1.physionet.org/ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.1.zip --no-check-certificate
10
+ unzip ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.1.zip
11
+ mv ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.1 ptbxl
12
+ cd ..
main.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model configs
2
+ from configurations.fastai_configs import conf_fastai_inception1d
3
+ from experiments.scp_experiment import SCPExperiment
4
+ from utilities.utils import generate_ptbxl_summary_table
5
+
6
+
7
+ def main():
8
+ data_folder = 'data/ptbxl/'
9
+ output_folder = 'output/'
10
+
11
+ models = [conf_fastai_inception1d]
12
+
13
+ # STANDARD SCP EXPERIMENTS ON PTB-XL
14
+
15
+ experiments = [
16
+ ('exp0', 'all'),
17
+ ('exp1', 'diagnostic'),
18
+ ('exp1.1', 'subdiagnostic'),
19
+ ('exp1.1.1', 'superdiagnostic'),
20
+ ('exp2', 'form'),
21
+ ('exp3', 'rhythm')
22
+ ]
23
+
24
+ for name, task in experiments:
25
+ e = SCPExperiment(name, task, data_folder, output_folder, models)
26
+ e.prepare()
27
+ e.perform()
28
+ e.evaluate()
29
+
30
+ # generate summary table
31
+ generate_ptbxl_summary_table()
32
+
33
+
34
+ if __name__ == "__main__":
35
+ main()
models/base_model.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ class ClassificationModel(object):
2
+
3
+ def __init__(self):
4
+ pass
5
+
6
+ def fit(self, X_train, y_train, X_val, y_val):
7
+ pass
8
+
9
+ def predict(self, X, full_sequence=True):
10
+ pass
models/basicconv1d.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from fastai.layers import *
6
+ from fastai.core import *
7
+
8
+ '''
9
+ This layer creates a convolution kernel that is convolved with the layer input
10
+ over a single spatial (or temporal) dimension to produce a tensor of outputs.
11
+ If use_bias is True, a bias vector is created and added to the outputs.
12
+ Finally, if activation is not None, it is applied to the outputs as well.
13
+ https://keras.io/api/layers/convolution_layers/convolution1d/
14
+ '''
15
+
16
+
17
+ def _conv1d(in_planes, out_planes, kernel_size=3, stride=1, dilation=1, act="relu", bn=True, drop_p=0):
18
+ lst = []
19
+ if (drop_p > 0):
20
+ lst.append(nn.Dropout(drop_p))
21
+ lst.append(nn.Conv1d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2,
22
+ dilation=dilation, bias=not bn))
23
+ if bn:
24
+ lst.append(nn.BatchNorm1d(out_planes))
25
+ if act == "relu":
26
+ lst.append(nn.ReLU(True))
27
+ if act == "elu":
28
+ lst.append(nn.ELU(True))
29
+ if act == "prelu":
30
+ lst.append(nn.PReLU(True))
31
+ return nn.Sequential(*lst)
32
+
33
+
34
+ def _fc(in_planes, out_planes, act="relu", bn=True):
35
+ lst = [nn.Linear(in_planes, out_planes, bias=not (bn))]
36
+ if bn:
37
+ lst.append(nn.BatchNorm1d(out_planes))
38
+ if act == "relu":
39
+ lst.append(nn.ReLU(True))
40
+ if act == "elu":
41
+ lst.append(nn.ELU(True))
42
+ if act == "prelu":
43
+ lst.append(nn.PReLU(True))
44
+ return nn.Sequential(*lst)
45
+
46
+
47
+ def cd_adaptive_concat_pool(relevant, irrelevant, module):
48
+ mpr, mpi = module.mp.attrib(relevant, irrelevant)
49
+ apr, api = module.ap.attrib(relevant, irrelevant)
50
+ return torch.cat([mpr, apr], 1), torch.cat([mpi, api], 1)
51
+
52
+
53
+ def attrib_adaptive_concat_pool(self, relevant, irrelevant):
54
+ return cd_adaptive_concat_pool(relevant, irrelevant, self)
55
+
56
+
57
+ class AdaptiveConcatPool1d(nn.Module):
58
+ """Layer that concat `AdaptiveAvgPool1d` and `AdaptiveMaxPool1d`."""
59
+
60
+ def __init__(self, sz: Optional[int] = None):
61
+ """Output will be 2*sz or 2 if sz is None"""
62
+ super().__init__()
63
+ sz = sz or 1
64
+ self.ap, self.mp = nn.AdaptiveAvgPool1d(sz), nn.AdaptiveMaxPool1d(sz)
65
+
66
+ def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)
67
+
68
+ def attrib(self, relevant, irrelevant):
69
+ return attrib_adaptive_concat_pool(self, relevant, irrelevant)
70
+
71
+
72
+ class SqueezeExcite1d(nn.Module):
73
+ """squeeze excite block as used for example in LSTM FCN"""
74
+
75
+ def __init__(self, channels, reduction=16):
76
+ super().__init__()
77
+ channels_reduced = channels // reduction
78
+ self.w1 = torch.nn.Parameter(torch.randn(channels_reduced, channels).unsqueeze(0))
79
+ self.w2 = torch.nn.Parameter(torch.randn(channels, channels_reduced).unsqueeze(0))
80
+
81
+ def forward(self, x):
82
+ # input is bs,ch,seq
83
+ z = torch.mean(x, dim=2, keepdim=True) # bs,ch
84
+ intermed = F.relu(torch.matmul(self.w1, z)) # (1,ch_red,ch * bs,ch,1) = (bs, ch_red, 1)
85
+ s = F.sigmoid(torch.matmul(self.w2, intermed)) # (1,ch,ch_red * bs, ch_red, 1=bs, ch, 1
86
+ return s * x # bs,ch,seq * bs, ch,1 = bs,ch,seq
87
+
88
+
89
+ def weight_init(m):
90
+ """call weight initialization for model n via n.apply(weight_init)"""
91
+ if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear):
92
+ nn.init.kaiming_normal_(m.weight)
93
+ if m.bias is not None:
94
+ nn.init.zeros_(m.bias)
95
+ if isinstance(m, nn.BatchNorm1d):
96
+ nn.init.constant_(m.weight, 1)
97
+ nn.init.constant_(m.bias, 0)
98
+ if isinstance(m, SqueezeExcite1d):
99
+ stdv1 = math.sqrt(2. / m.w1.size[0])
100
+ nn.init.normal_(m.w1, 0., stdv1)
101
+ stdv2 = math.sqrt(1. / m.w2.size[1])
102
+ nn.init.normal_(m.w2, 0., stdv2)
103
+
104
+
105
+ def create_head1d(nf: int, nc: int, lin_ftrs: Optional[Collection[int]] = None, ps: Floats = 0.5,
106
+ bn_final: bool = False, bn: bool = True, act="relu", concat_pooling=True):
107
+ """Model head that takes `nf` features, runs through `lin_ftrs`, and about `nc` classes; added bn and act here"""
108
+ lin_ftrs = [2 * nf if concat_pooling else nf, nc] if lin_ftrs is None else [
109
+ 2 * nf if concat_pooling else nf] + lin_ftrs + [
110
+ nc] # was [nf, 512,nc]
111
+ ps = listify(ps)
112
+ if len(ps) == 1: ps = [ps[0] / 2] * (len(lin_ftrs) - 2) + ps
113
+ actns = [nn.ReLU(inplace=True) if act == "relu" else nn.ELU(inplace=True)] * (len(lin_ftrs) - 2) + [None]
114
+ layers = [AdaptiveConcatPool1d() if concat_pooling else nn.MaxPool1d(2), Flatten()]
115
+ for ni, no, p, actn in zip(lin_ftrs[:-1], lin_ftrs[1:], ps, actns):
116
+ layers += bn_drop_lin(ni, no, bn, p, actn)
117
+ if bn_final: layers.append(nn.BatchNorm1d(lin_ftrs[-1], momentum=0.01))
118
+ return nn.Sequential(*layers)
119
+
120
+
121
+ # basic convolutional architecture
122
+
123
+ class BasicConv1d(nn.Sequential):
124
+ """basic conv1d"""
125
+
126
+ def __init__(self, filters=None, kernel_size=3, stride=2, dilation=1, pool=0, pool_stride=1,
127
+ squeeze_excite_reduction=0, num_classes=2, input_channels=8, act="relu", bn=True, headless=False,
128
+ split_first_layer=False, drop_p=0., lin_ftrs_head=None, ps_head=0.5, bn_final_head=False, bn_head=True,
129
+ act_head="relu", concat_pooling=True):
130
+ if filters is None:
131
+ filters = [128, 128, 128, 128]
132
+ layers = []
133
+ if isinstance(kernel_size, int):
134
+ kernel_size = [kernel_size] * len(filters)
135
+ for i in range(len(filters)):
136
+ layers_tmp = [_conv1d(input_channels if i == 0 else filters[i - 1], filters[i], kernel_size=kernel_size[i],
137
+ stride=(1 if (split_first_layer is True and i == 0) else stride), dilation=dilation,
138
+ act="none" if ((headless is True and i == len(filters) - 1) or (
139
+ split_first_layer is True and i == 0)) else act,
140
+ bn=False if (headless is True and i == len(filters) - 1) else bn,
141
+ drop_p=(0. if i == 0 else drop_p))]
142
+
143
+ if split_first_layer is True and i == 0:
144
+ layers_tmp.append(_conv1d(filters[0], filters[0], kernel_size=1, stride=1, act=act, bn=bn, drop_p=0.))
145
+ # layers_tmp.append(nn.Linear(filters[0],filters[0],bias=not(bn)))
146
+ # layers_tmp.append(_fc(filters[0],filters[0],act=act,bn=bn))
147
+ if pool > 0 and i < len(filters) - 1:
148
+ layers_tmp.append(nn.MaxPool1d(pool, stride=pool_stride, padding=(pool - 1) // 2))
149
+ if squeeze_excite_reduction > 0:
150
+ layers_tmp.append(SqueezeExcite1d(filters[i], squeeze_excite_reduction))
151
+ layers.append(nn.Sequential(*layers_tmp))
152
+
153
+ # head layers.append(nn.AdaptiveAvgPool1d(1)) layers.append(nn.Linear(filters[-1],num_classes)) head
154
+ # #inplace=True leads to a runtime error see ReLU+ dropout
155
+ # https://discuss.pytorch.org/t/relu-dropout-inplace/13467/5
156
+ self.headless = headless
157
+ if headless is True:
158
+ head = nn.Sequential(nn.AdaptiveAvgPool1d(1), Flatten())
159
+ else:
160
+ head = create_head1d(filters[-1], nc=num_classes, lin_ftrs=lin_ftrs_head, ps=ps_head,
161
+ bn_final=bn_final_head, bn=bn_head, act=act_head, concat_pooling=concat_pooling)
162
+ layers.append(head)
163
+
164
+ super().__init__(*layers)
165
+
166
+ def get_layer_groups(self):
167
+ return self[2], self[-1]
168
+
169
+ def get_output_layer(self):
170
+ if self.headless is False:
171
+ return self[-1][-1]
172
+ else:
173
+ return None
174
+
175
+ def set_output_layer(self, x):
176
+ if self.headless is False:
177
+ self[-1][-1] = x
178
+
179
+
180
+ # convenience functions for basic convolutional architectures
181
+ def fcn(filters=None, num_classes=2, input_channels=8):
182
+ if filters is None:
183
+ filters = [128] * 5
184
+ filters_in = filters + [num_classes]
185
+ return BasicConv1d(filters=filters_in, kernel_size=3, stride=1, pool=2, pool_stride=2,
186
+ input_channels=input_channels, act="relu", bn=True, headless=True)
187
+
188
+
189
+ def fcn_wang(num_classes=2, input_channels=8, lin_ftrs_head=None, ps_head=0.5, bn_final_head=False, bn_head=True,
190
+ act_head="relu", concat_pooling=True):
191
+ return BasicConv1d(filters=[128, 256, 128], kernel_size=[8, 5, 3], stride=1, pool=0, pool_stride=2,
192
+ num_classes=num_classes, input_channels=input_channels, act="relu", bn=True,
193
+ lin_ftrs_head=lin_ftrs_head, ps_head=ps_head, bn_final_head=bn_final_head, bn_head=bn_head,
194
+ act_head=act_head, concat_pooling=concat_pooling)
195
+
196
+
197
+ def schirrmeister(num_classes=2, input_channels=8, lin_ftrs_head=None, ps_head=0.5, bn_final_head=False, bn_head=True,
198
+ act_head="relu", concat_pooling=True):
199
+ return BasicConv1d(filters=[25, 50, 100, 200], kernel_size=10, stride=3, pool=3, pool_stride=1,
200
+ num_classes=num_classes, input_channels=input_channels, act="relu", bn=True, headless=False,
201
+ split_first_layer=True, drop_p=0.5, lin_ftrs_head=lin_ftrs_head, ps_head=ps_head,
202
+ bn_final_head=bn_final_head, bn_head=bn_head, act_head=act_head, concat_pooling=concat_pooling)
203
+
204
+
205
+ def sen(filters=None, num_classes=2, input_channels=8, squeeze_excite_reduction=16, drop_p=0., lin_ftrs_head=None,
206
+ ps_head=0.5, bn_final_head=False, bn_head=True, act_head="relu", concat_pooling=True):
207
+ if filters is None:
208
+ filters = [128] * 5
209
+ return BasicConv1d(filters=filters, kernel_size=3, stride=2, pool=0, pool_stride=0, input_channels=input_channels,
210
+ act="relu", bn=True, num_classes=num_classes, squeeze_excite_reduction=squeeze_excite_reduction,
211
+ drop_p=drop_p, lin_ftrs_head=lin_ftrs_head, ps_head=ps_head, bn_final_head=bn_final_head,
212
+ bn_head=bn_head, act_head=act_head, concat_pooling=concat_pooling)
213
+
214
+
215
+ def basic1d(filters=None, kernel_size=3, stride=2, dilation=1, pool=0, pool_stride=1, squeeze_excite_reduction=0,
216
+ num_classes=2, input_channels=8, act="relu", bn=True, headless=False, drop_p=0., lin_ftrs_head=None,
217
+ ps_head=0.5, bn_final_head=False, bn_head=True, act_head="relu", concat_pooling=True):
218
+ if filters is None:
219
+ filters = [128] * 5
220
+ return BasicConv1d(filters=filters, kernel_size=kernel_size, stride=stride, dilation=dilation, pool=pool,
221
+ pool_stride=pool_stride, squeeze_excite_reduction=squeeze_excite_reduction,
222
+ num_classes=num_classes, input_channels=input_channels, act=act, bn=bn, headless=headless,
223
+ drop_p=drop_p, lin_ftrs_head=lin_ftrs_head, ps_head=ps_head, bn_final_head=bn_final_head,
224
+ bn_head=bn_head, act_head=act_head, concat_pooling=concat_pooling)
models/fastaiModel.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.basic_data import *
2
+ from fastai.basic_train import *
3
+ from fastai.train import *
4
+ from fastai.torch_core import *
5
+ from fastai.callbacks.tracker import SaveModelCallback
6
+ from pathlib import Path
7
+ from functools import partial
8
+ import math
9
+ import torch
10
+ import numpy as np
11
+ import matplotlib
12
+ import matplotlib.pyplot as plt
13
+ from fastai.callback import Callback
14
+
15
+ from models.base_model import ClassificationModel
16
+ from models.basicconv1d import weight_init, fcn_wang, fcn, schirrmeister, sen, basic1d
17
+ from models.inception1d import inception1d
18
+ from models.resnet1d import resnet1d18, resnet1d34, resnet1d50, resnet1d101, resnet1d152, resnet1d_wang, \
19
+ wrn1d_22
20
+ from models.rnn1d import RNN1d
21
+ from utilities.timeseries_utils import TimeseriesDatasetCrops, ToTensor, aggregate_predictions
22
+ from models.xresnet1d import xresnet1d18_deeper, xresnet1d34_deeper, xresnet1d50_deeper, xresnet1d18_deep, \
23
+ xresnet1d34_deep, xresnet1d50_deep, xresnet1d18, xresnet1d34, xresnet1d101, xresnet1d50, xresnet1d152
24
+ from utilities.utils import evaluate_experiment
25
+
26
+
27
+ class MetricFunc(Callback):
28
+ """Obtains score using user-supplied function func (potentially ignoring targets with ignore_idx)"""
29
+
30
+ def __init__(self, func, name="MetricFunc", ignore_idx=None, one_hot_encode_target=True, argmax_pred=False,
31
+ softmax_pred=True, flatten_target=True, sigmoid_pred=False, metric_component=None):
32
+ super().__init__()
33
+ self.metric_complete = self.func(self.y_true, self.y_pred)
34
+ self.y_true = None
35
+ self.y_pred = None
36
+ self.func = func
37
+ self.ignore_idx = ignore_idx
38
+ self.one_hot_encode_target = one_hot_encode_target
39
+ self.argmax_pred = argmax_pred
40
+ self.softmax_pred = softmax_pred
41
+ self.flatten_target = flatten_target
42
+ self.sigmoid_pred = sigmoid_pred
43
+ self.metric_component = metric_component
44
+ self.name = name
45
+
46
+ def on_epoch_begin(self, **kwargs):
47
+ pass
48
+
49
+ def on_batch_end(self, last_output, last_target, **kwargs):
50
+ # flatten everything (to make it also work for annotation tasks)
51
+ y_pred_flat = last_output.view((-1, last_output.size()[-1]))
52
+
53
+ if self.flatten_target:
54
+ last_target.view(-1)
55
+ y_true_flat = last_target
56
+
57
+ # optionally take argmax of predictions
58
+ if self.argmax_pred is True:
59
+ y_pred_flat = y_pred_flat.argmax(dim=1)
60
+ elif self.softmax_pred is True:
61
+ y_pred_flat = F.softmax(y_pred_flat, dim=1)
62
+ elif self.sigmoid_pred is True:
63
+ y_pred_flat = torch.sigmoid(y_pred_flat)
64
+
65
+ # potentially remove ignore_idx entries
66
+ if self.ignore_idx is not None:
67
+ selected_indices = (y_true_flat != self.ignore_idx).nonzero().squeeze()
68
+ y_pred_flat = y_pred_flat[selected_indices]
69
+ y_true_flat = y_true_flat[selected_indices]
70
+
71
+ y_pred_flat = to_np(y_pred_flat)
72
+ y_true_flat = to_np(y_true_flat)
73
+
74
+ if self.one_hot_encode_target is True:
75
+ y_true_flat = np.one_hot_np(y_true_flat, last_output.size()[-1])
76
+
77
+ if self.y_pred is None:
78
+ self.y_pred = y_pred_flat
79
+ self.y_true = y_true_flat
80
+ else:
81
+ self.y_pred = np.concatenate([self.y_pred, y_pred_flat], axis=0)
82
+ self.y_true = np.concatenate([self.y_true, y_true_flat], axis=0)
83
+
84
+ def on_epoch_end(self, last_metrics, **kwargs):
85
+ # access full metric (possibly multiple components) via self.metric_complete
86
+ if self.metric_component is not None:
87
+ return add_metrics(last_metrics, self.metric_complete[self.metric_component])
88
+ else:
89
+ return add_metrics(last_metrics, self.metric_complete)
90
+
91
+
92
+ def fmax_metric(targs, preds):
93
+ return evaluate_experiment(targs, preds)["Fmax"]
94
+
95
+
96
+ def auc_metric(targs, preds):
97
+ return evaluate_experiment(targs, preds)["macro_auc"]
98
+
99
+
100
+ def mse_flat(preds, targs):
101
+ return torch.mean(torch.pow(preds.view(-1) - targs.view(-1), 2))
102
+
103
+
104
+ def nll_regression(preds, targs):
105
+ # preds: bs, 2
106
+ # targs: bs, 1
107
+ preds_mean = preds[:, 0]
108
+ # warning: output goes through exponential map to ensure positivity
109
+ preds_var = torch.clamp(torch.exp(preds[:, 1]), 1e-4, 1e10)
110
+ # print(to_np(preds_mean)[0],to_np(targs)[0,0],to_np(torch.sqrt(preds_var))[0])
111
+ return torch.mean(torch.log(2 * math.pi * preds_var) / 2) + torch.mean(
112
+ torch.pow(preds_mean - targs[:, 0], 2) / 2 / preds_var)
113
+
114
+
115
+ def nll_regression_init(m):
116
+ assert (isinstance(m, nn.Linear))
117
+ nn.init.normal_(m.weight, 0., 0.001)
118
+ nn.init.constant_(m.bias, 4)
119
+
120
+
121
+ def lr_find_plot(learner, path, filename="lr_find", n_skip=10, n_skip_end=2):
122
+ """
123
+ saves lr_find plot as file (normally only jupyter output)
124
+ on the x-axis is lrs[-1]
125
+ """
126
+ learner.lr_find()
127
+
128
+ backend_old = matplotlib.get_backend()
129
+ plt.switch_backend('agg')
130
+ plt.ylabel("loss")
131
+ plt.xlabel("learning rate (log scale)")
132
+ losses = [to_np(x) for x in learner.recorder.losses[n_skip:-(n_skip_end + 1)]]
133
+ # print(learner.recorder.val_losses)
134
+ # val_losses = [ to_np(x) for x in learner.recorder.val_losses[n_skip:-(n_skip_end+1)]]
135
+
136
+ plt.plot(learner.recorder.lrs[n_skip:-(n_skip_end + 1)], losses)
137
+ # plt.plot(learner.recorder.lrs[n_skip:-(n_skip_end+1)],val_losses )
138
+
139
+ plt.xscale('log')
140
+ plt.savefig(str(path / (filename + '.png')))
141
+ plt.switch_backend(backend_old)
142
+
143
+
144
+ def losses_plot(learner, path, filename="losses", last: int = None):
145
+ """
146
+ saves lr_find plot as file (normally only jupyter output)
147
+ on the x-axis is lrs[-1]
148
+ """
149
+ backend_old = matplotlib.get_backend()
150
+ plt.switch_backend('agg')
151
+ plt.ylabel("loss")
152
+ plt.xlabel("Batches processed")
153
+
154
+ last = ifnone(last, len(learner.recorder.nb_batches))
155
+ l_b = np.sum(learner.recorder.nb_batches[-last:])
156
+ iterations = range_of(learner.recorder.losses)[-l_b:]
157
+ plt.plot(iterations, learner.recorder.losses[-l_b:], label='Train')
158
+ val_iter = learner.recorder.nb_batches[-last:]
159
+ val_iter = np.cumsum(val_iter) + np.sum(learner.recorder.nb_batches[:-last])
160
+ plt.plot(val_iter, learner.recorder.val_losses[-last:], label='Validation')
161
+ plt.legend()
162
+
163
+ plt.savefig(str(path / (filename + '.png')))
164
+ plt.switch_backend(backend_old)
165
+
166
+
167
+ class FastaiModel(ClassificationModel):
168
+ def __init__(self, name, n_classes, freq, output_folder, input_shape, pretrained=False, input_size=2.5,
169
+ input_channels=12, chunkify_train=False, chunkify_valid=True, bs=128, ps_head=0.5, lin_ftrs_head=None,
170
+ wd=1e-2, epochs=50, lr=1e-2, kernel_size=5, loss="binary_cross_entropy", pretrained_folder=None,
171
+ n_classes_pretrained=None, gradual_unfreezing=True, discriminative_lrs=True, epochs_finetuning=30,
172
+ early_stopping=None, aggregate_fn="max", concat_train_val=False):
173
+ super().__init__()
174
+
175
+ if lin_ftrs_head is None:
176
+ lin_ftrs_head = [128]
177
+ self.name = name
178
+ self.num_classes = n_classes if loss != "nll_regression" else 2
179
+ self.target_fs = freq
180
+ self.output_folder = Path(output_folder)
181
+
182
+ self.input_size = int(input_size * self.target_fs)
183
+ self.input_channels = input_channels
184
+
185
+ self.chunkify_train = chunkify_train
186
+ self.chunkify_valid = chunkify_valid
187
+
188
+ self.chunk_length_train = 2 * self.input_size # target_fs*6
189
+ self.chunk_length_valid = self.input_size
190
+
191
+ self.min_chunk_length = self.input_size # chunk_length
192
+
193
+ self.stride_length_train = self.input_size # chunk_length_train//8
194
+ self.stride_length_valid = self.input_size // 2 # chunk_length_valid
195
+
196
+ self.copies_valid = 0 # >0 should only be used with chunkify_valid=False
197
+
198
+ self.bs = bs
199
+ self.ps_head = ps_head
200
+ self.lin_ftrs_head = lin_ftrs_head
201
+ self.wd = wd
202
+ self.epochs = epochs
203
+ self.lr = lr
204
+ self.kernel_size = kernel_size
205
+ self.loss = loss
206
+ self.input_shape = input_shape
207
+
208
+ if pretrained:
209
+ if pretrained_folder is None:
210
+ pretrained_folder = Path('../output/exp0/models/' + name.split("_pretrained")[0] + '/')
211
+ # pretrained_folder = Path('/output/exp0/models/'+name.split("_pretrained")[0]+'/')
212
+
213
+ if n_classes_pretrained is None:
214
+ n_classes_pretrained = 71
215
+
216
+ self.pretrained_folder = None if pretrained_folder is None else Path(pretrained_folder)
217
+ self.n_classes_pretrained = n_classes_pretrained
218
+ self.discriminative_lrs = discriminative_lrs
219
+ self.gradual_unfreezing = gradual_unfreezing
220
+ self.epochs_finetuning = epochs_finetuning
221
+
222
+ self.early_stopping = early_stopping
223
+ self.aggregate_fn = aggregate_fn
224
+ self.concat_train_val = concat_train_val
225
+
226
+ def fit(self, X_train, y_train, X_val, y_val):
227
+ # convert everything to float32
228
+ X_train = [l.astype(np.float32) for l in X_train]
229
+ X_val = [l.astype(np.float32) for l in X_val]
230
+ y_train = [l.astype(np.float32) for l in y_train]
231
+ y_val = [l.astype(np.float32) for l in y_val]
232
+
233
+ if self.concat_train_val:
234
+ X_train += X_val
235
+ y_train += y_val
236
+
237
+ if self.pretrained_folder is None: # from scratch
238
+ print("Training from scratch...")
239
+ learn = self._get_learner(X_train, y_train, X_val, y_val)
240
+
241
+ # if(self.discriminative_lrs):
242
+ # layer_groups=learn.model.get_layer_groups()
243
+ # learn.split(layer_groups)
244
+ learn.model.apply(weight_init)
245
+
246
+ # initialization for regression output
247
+ if self.loss == "nll_regression" or self.loss == "mse":
248
+ output_layer_new = learn.model.get_output_layer()
249
+ output_layer_new.apply(nll_regression_init)
250
+ learn.model.set_output_layer(output_layer_new)
251
+
252
+ lr_find_plot(learn, self.output_folder)
253
+ learn.fit_one_cycle(self.epochs, self.lr) # slice(self.lr) if self.discriminative_lrs else self.lr)
254
+ losses_plot(learn, self.output_folder)
255
+ else: # finetuning
256
+ print("Finetuning...")
257
+ # create learner
258
+ learn = self._get_learner(X_train, y_train, X_val, y_val, self.n_classes_pretrained)
259
+
260
+ # load pretrained model
261
+ learn.path = self.pretrained_folder
262
+ learn.load(self.pretrained_folder.stem)
263
+ learn.path = self.output_folder
264
+
265
+ # exchange top layer
266
+ output_layer = learn.model.get_output_layer()
267
+ output_layer_new = nn.Linear(output_layer.in_features, self.num_classes).cuda()
268
+ apply_init(output_layer_new, nn.init.kaiming_normal_)
269
+ learn.model.set_output_layer(output_layer_new)
270
+
271
+ # layer groups
272
+ if self.discriminative_lrs:
273
+ layer_groups = learn.model.get_layer_groups()
274
+ learn.split(layer_groups)
275
+
276
+ learn.train_bn = True # make sure if bn mode is train
277
+
278
+ # train
279
+ lr = self.lr
280
+ if self.gradual_unfreezing:
281
+ assert (self.discriminative_lrs is True)
282
+ learn.freeze()
283
+ lr_find_plot(learn, self.output_folder, "lr_find0")
284
+ learn.fit_one_cycle(self.epochs_finetuning, lr)
285
+ losses_plot(learn, self.output_folder, "losses0")
286
+ # for n in [0]:#range(len(layer_groups)): learn.freeze_to(-n-1) lr_find_plot(learn,
287
+ # self.output_folder,"lr_find"+str(n)) learn.fit_one_cycle(self.epochs_gradual_unfreezing,slice(lr))
288
+ # losses_plot(learn, self.output_folder,"losses"+str(n)) if(n==0):#reduce lr after first step lr/=10.
289
+ # if(n>0 and (self.name.startswith("fastai_lstm") or self.name.startswith("fastai_gru"))):#reduce lr
290
+ # further for RNNs lr/=10
291
+
292
+ learn.unfreeze()
293
+ lr_find_plot(learn, self.output_folder, "lr_find" + str(len(layer_groups)))
294
+ learn.fit_one_cycle(self.epochs_finetuning, slice(lr / 1000, lr / 10))
295
+ losses_plot(learn, self.output_folder, "losses" + str(len(layer_groups)))
296
+
297
+ learn.save(self.name) # even for early stopping the best model will have been loaded again
298
+
299
+ def predict(self, X):
300
+ X = [l.astype(np.float32) for l in X]
301
+ y_dummy = [np.ones(self.num_classes, dtype=np.float32) for _ in range(len(X))]
302
+
303
+ learn = self._get_learner(X, y_dummy, X, y_dummy)
304
+ learn.load(self.name)
305
+
306
+ preds, targs = learn.get_preds()
307
+ preds = to_np(preds)
308
+
309
+ idmap = learn.data.valid_ds.get_id_mapping()
310
+
311
+ return aggregate_predictions(preds, idmap=idmap,
312
+ aggregate_fn=np.mean if self.aggregate_fn == "mean" else np.amax)
313
+
314
+ def _get_learner(self, X_train, y_train, X_val, y_val, num_classes=None):
315
+ df_train = pd.DataFrame({"data": range(len(X_train)), "label": y_train})
316
+ df_valid = pd.DataFrame({"data": range(len(X_val)), "label": y_val})
317
+
318
+ tfms_ptb_xl = [ToTensor()]
319
+
320
+ ds_train = TimeseriesDatasetCrops(df_train, self.input_size, num_classes=self.num_classes,
321
+ chunk_length=self.chunk_length_train if self.chunkify_train else 0,
322
+ min_chunk_length=self.min_chunk_length,
323
+ stride=self.stride_length_train, transforms=tfms_ptb_xl,
324
+ annotation=False, col_lbl="label", npy_data=X_train)
325
+ ds_valid = TimeseriesDatasetCrops(df_valid, self.input_size, num_classes=self.num_classes,
326
+ chunk_length=self.chunk_length_valid if self.chunkify_valid else 0,
327
+ min_chunk_length=self.min_chunk_length,
328
+ stride=self.stride_length_valid, transforms=tfms_ptb_xl,
329
+ annotation=False, col_lbl="label", npy_data=X_val)
330
+
331
+ db = DataBunch.create(ds_train, ds_valid, bs=self.bs)
332
+
333
+ if self.loss == "binary_cross_entropy":
334
+ loss = F.binary_cross_entropy_with_logits
335
+ elif self.loss == "cross_entropy":
336
+ loss = F.cross_entropy
337
+ elif self.loss == "mse":
338
+ loss = mse_flat
339
+ elif self.loss == "nll_regression":
340
+ loss = nll_regression
341
+ else:
342
+ print("loss not found")
343
+ assert (True)
344
+
345
+ self.input_channels = self.input_shape[-1]
346
+ metrics = []
347
+
348
+ print("model:", self.name)
349
+ # note: all models of a particular kind share the same prefix but potentially a different
350
+ # postfix such as _input256
351
+ num_classes = self.num_classes if num_classes is None else num_classes
352
+ # resnet resnet1d18,resnet1d34,resnet1d50,resnet1d101,resnet1d152,resnet1d_wang,resnet1d,wrn1d_22
353
+ if self.name.startswith("fastai_resnet1d18"):
354
+ model = resnet1d18(num_classes=num_classes, input_channels=self.input_channels, inplanes=128,
355
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
356
+ lin_ftrs_head=self.lin_ftrs_head)
357
+ elif self.name.startswith("fastai_resnet1d34"):
358
+ model = resnet1d34(num_classes=num_classes, input_channels=self.input_channels, inplanes=128,
359
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
360
+ lin_ftrs_head=self.lin_ftrs_head)
361
+ elif self.name.startswith("fastai_resnet1d50"):
362
+ model = resnet1d50(num_classes=num_classes, input_channels=self.input_channels, inplanes=128,
363
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
364
+ lin_ftrs_head=self.lin_ftrs_head)
365
+ elif self.name.startswith("fastai_resnet1d101"):
366
+ model = resnet1d101(num_classes=num_classes, input_channels=self.input_channels, inplanes=128,
367
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
368
+ lin_ftrs_head=self.lin_ftrs_head)
369
+ elif self.name.startswith("fastai_resnet1d152"):
370
+ model = resnet1d152(num_classes=num_classes, input_channels=self.input_channels, inplanes=128,
371
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
372
+ lin_ftrs_head=self.lin_ftrs_head)
373
+ elif self.name.startswith("fastai_resnet1d_wang"):
374
+ model = resnet1d_wang(num_classes=num_classes, input_channels=self.input_channels,
375
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
376
+ lin_ftrs_head=self.lin_ftrs_head)
377
+ elif self.name.startswith("fastai_wrn1d_22"):
378
+ model = wrn1d_22(num_classes=num_classes, input_channels=self.input_channels,
379
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
380
+ lin_ftrs_head=self.lin_ftrs_head)
381
+
382
+ # xresnet ... (order important for string capture)
383
+ elif self.name.startswith("fastai_xresnet1d18_deeper"):
384
+ model = xresnet1d18_deeper(num_classes=num_classes, input_channels=self.input_channels,
385
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
386
+ lin_ftrs_head=self.lin_ftrs_head)
387
+ elif self.name.startswith("fastai_xresnet1d34_deeper"):
388
+ model = xresnet1d34_deeper(num_classes=num_classes, input_channels=self.input_channels,
389
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
390
+ lin_ftrs_head=self.lin_ftrs_head)
391
+ elif self.name.startswith("fastai_xresnet1d50_deeper"):
392
+ model = xresnet1d50_deeper(num_classes=num_classes, input_channels=self.input_channels,
393
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
394
+ lin_ftrs_head=self.lin_ftrs_head)
395
+ elif self.name.startswith("fastai_xresnet1d18_deep"):
396
+ model = xresnet1d18_deep(num_classes=num_classes, input_channels=self.input_channels,
397
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
398
+ lin_ftrs_head=self.lin_ftrs_head)
399
+ elif self.name.startswith("fastai_xresnet1d34_deep"):
400
+ model = xresnet1d34_deep(num_classes=num_classes, input_channels=self.input_channels,
401
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
402
+ lin_ftrs_head=self.lin_ftrs_head)
403
+ elif self.name.startswith("fastai_xresnet1d50_deep"):
404
+ model = xresnet1d50_deep(num_classes=num_classes, input_channels=self.input_channels,
405
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
406
+ lin_ftrs_head=self.lin_ftrs_head)
407
+ elif self.name.startswith("fastai_xresnet1d18"):
408
+ model = xresnet1d18(num_classes=num_classes, input_channels=self.input_channels,
409
+ kernel_size=self.kernel_size, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
410
+ elif self.name.startswith("fastai_xresnet1d34"):
411
+ model = xresnet1d34(num_classes=num_classes, input_channels=self.input_channels,
412
+ kernel_size=self.kernel_size, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
413
+ elif self.name.startswith("fastai_xresnet1d50"):
414
+ model = xresnet1d50(num_classes=num_classes, input_channels=self.input_channels,
415
+ kernel_size=self.kernel_size, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
416
+ elif self.name.startswith("fastai_xresnet1d101"):
417
+ model = xresnet1d101(num_classes=num_classes, input_channels=self.input_channels,
418
+ kernel_size=self.kernel_size, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
419
+ elif self.name.startswith("fastai_xresnet1d152"):
420
+ model = xresnet1d152(num_classes=num_classes, input_channels=self.input_channels,
421
+ kernel_size=self.kernel_size, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
422
+
423
+ # inception passing the default kernel size of 5 leads to a max kernel size of 40-1 in the inception model as
424
+ # proposed in the original paper
425
+ elif self.name == "fastai_inception1d_no_residual": # note: order important for string capture
426
+ model = inception1d(num_classes=num_classes, input_channels=self.input_channels,
427
+ use_residual=False, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head,
428
+ kernel_size=8 * self.kernel_size)
429
+ elif self.name.startswith("fastai_inception1d"):
430
+ model = inception1d(num_classes=num_classes, input_channels=self.input_channels,
431
+ use_residual=True, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head,
432
+ kernel_size=8 * self.kernel_size)
433
+
434
+
435
+ # BasicConv1d fcn,fcn_wang,schirrmeister,sen,basic1d
436
+ elif self.name.startswith("fastai_fcn_wang"): # note: order important for string capture
437
+ model = fcn_wang(num_classes=num_classes, input_channels=self.input_channels,
438
+ ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
439
+ elif self.name.startswith("fastai_fcn"):
440
+ model = fcn(num_classes=num_classes, input_channels=self.input_channels)
441
+ elif self.name.startswith("fastai_schirrmeister"):
442
+ model = schirrmeister(num_classes=num_classes, input_channels=self.input_channels,
443
+ ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
444
+ elif self.name.startswith("fastai_sen"):
445
+ model = sen(num_classes=num_classes, input_channels=self.input_channels, ps_head=self.ps_head,
446
+ lin_ftrs_head=self.lin_ftrs_head)
447
+ elif self.name.startswith("fastai_basic1d"):
448
+ model = basic1d(num_classes=num_classes, input_channels=self.input_channels,
449
+ kernel_size=self.kernel_size, ps_head=self.ps_head,
450
+ lin_ftrs_head=self.lin_ftrs_head)
451
+ # RNN
452
+ elif self.name.startswith("fastai_lstm_bidir"):
453
+ model = RNN1d(input_channels=self.input_channels, num_classes=num_classes, lstm=True,
454
+ bidirectional=True, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
455
+ elif self.name.startswith("fastai_gru_bidir"):
456
+ model = RNN1d(input_channels=self.input_channels, num_classes=num_classes, lstm=False,
457
+ bidirectional=True, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
458
+ elif self.name.startswith("fastai_lstm"):
459
+ model = RNN1d(input_channels=self.input_channels, num_classes=num_classes, lstm=True,
460
+ bidirectional=False, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
461
+ elif self.name.startswith("fastai_gru"):
462
+ model = RNN1d(input_channels=self.input_channels, num_classes=num_classes, lstm=False,
463
+ bidirectional=False, ps_head=self.ps_head, lin_ftrs_head=self.lin_ftrs_head)
464
+ else:
465
+ print("Model not found.")
466
+ assert True
467
+
468
+ learn = Learner(db, model, loss_func=loss, metrics=metrics, wd=self.wd, path=self.output_folder)
469
+
470
+ if self.name.startswith("fastai_lstm") or self.name.startswith("fastai_gru"):
471
+ learn.callback_fns.append(partial(GradientClipping, clip=0.25))
472
+
473
+ if self.early_stopping is not None:
474
+ # supported options: valid_loss, macro_auc, fmax
475
+ if self.early_stopping == "macro_auc" and self.loss != "mse" and self.loss != "nll_regression":
476
+ metric = MetricFunc(auc_metric, self.early_stopping,
477
+ one_hot_encode_target=False, argmax_pred=False, softmax_pred=False,
478
+ sigmoid_pred=True, flatten_target=False)
479
+ learn.metrics.append(metric)
480
+ learn.callback_fns.append(
481
+ partial(SaveModelCallback, monitor=self.early_stopping, every='improvement', name=self.name))
482
+ elif self.early_stopping == "fmax" and self.loss != "mse" and self.loss != "nll_regression":
483
+ metric = MetricFunc(fmax_metric, self.early_stopping,
484
+ one_hot_encode_target=False, argmax_pred=False, softmax_pred=False,
485
+ sigmoid_pred=True, flatten_target=False)
486
+ learn.metrics.append(metric)
487
+ learn.callback_fns.append(partial(SaveModelCallback, monitor=self.early_stopping, every='improvement', name=self.name))
488
+ elif self.early_stopping == "valid_loss":
489
+ learn.callback_fns.append(partial(SaveModelCallback, monitor=self.early_stopping, every='improvement', name=self.name))
490
+
491
+ return learn
models/inception1d.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from fastai.core import *
4
+
5
+ # Inception time inspired by https://github.com/hfawaz/InceptionTime/blob/master/classifiers/inception.py and https://github.com/tcapelle/TimeSeries_fastai/blob/master/inception.py
6
+ from models.basicconv1d import create_head1d
7
+
8
+
9
+ def conv(in_planes, out_planes, kernel_size=3, stride=1):
10
+ "convolution with padding"
11
+ return nn.Conv1d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
12
+ padding=(kernel_size - 1) // 2, bias=False)
13
+
14
+
15
+ def noop(x): return x
16
+
17
+
18
+ class InceptionBlock1d(nn.Module):
19
+ def __init__(self, ni, nb_filters, kss, stride=1, act='linear', bottleneck_size=32):
20
+ super().__init__()
21
+ self.bottleneck = conv(ni, bottleneck_size, 1, stride) if (bottleneck_size > 0) else noop
22
+
23
+ self.convs = nn.ModuleList(
24
+ [conv(bottleneck_size if (bottleneck_size > 0) else ni, nb_filters, ks) for ks in kss])
25
+ self.conv_bottle = nn.Sequential(nn.MaxPool1d(3, stride, padding=1), conv(ni, nb_filters, 1))
26
+ self.bn_relu = nn.Sequential(nn.BatchNorm1d((len(kss) + 1) * nb_filters), nn.ReLU())
27
+
28
+ def forward(self, x):
29
+ # print("block in",x.size())
30
+ bottled = self.bottleneck(x)
31
+ out = self.bn_relu(torch.cat([c(bottled) for c in self.convs] + [self.conv_bottle(x)], dim=1))
32
+ return out
33
+
34
+
35
+ class Shortcut1d(nn.Module):
36
+ def __init__(self, ni, nf):
37
+ super().__init__()
38
+ self.act_fn = nn.ReLU(True)
39
+ self.conv = conv(ni, nf, 1)
40
+ self.bn = nn.BatchNorm1d(nf)
41
+
42
+ def forward(self, inp, out):
43
+ # print("sk",out.size(), inp.size(), self.conv(inp).size(), self.bn(self.conv(inp)).size)
44
+ # input()
45
+ return self.act_fn(out + self.bn(self.conv(inp)))
46
+
47
+
48
+ class InceptionBackbone(nn.Module):
49
+ def __init__(self, input_channels, kss, depth, bottleneck_size, nb_filters, use_residual):
50
+ super().__init__()
51
+
52
+ self.depth = depth
53
+ assert ((depth % 3) == 0)
54
+ self.use_residual = use_residual
55
+
56
+ n_ks = len(kss) + 1
57
+ self.im = nn.ModuleList([InceptionBlock1d(input_channels if d == 0 else n_ks * nb_filters,
58
+ nb_filters=nb_filters, kss=kss,
59
+ bottleneck_size=bottleneck_size) for d in range(depth)])
60
+ self.sk = nn.ModuleList(
61
+ [Shortcut1d(input_channels if d == 0 else n_ks * nb_filters, n_ks * nb_filters) for d in
62
+ range(depth // 3)])
63
+
64
+ def forward(self, x):
65
+
66
+ input_res = x
67
+ for d in range(self.depth):
68
+ x = self.im[d](x)
69
+ if self.use_residual and d % 3 == 2:
70
+ x = (self.sk[d // 3])(input_res, x)
71
+ input_res = x.clone()
72
+ return x
73
+
74
+
75
+ class Inception1d(nn.Module):
76
+ """inception time architecture"""
77
+
78
+ def __init__(self, num_classes=2, input_channels=8, kernel_size=40, depth=6, bottleneck_size=32, nb_filters=32,
79
+ use_residual=True, lin_ftrs_head=None, ps_head=0.5, bn_final_head=False, bn_head=True, act_head="relu",
80
+ concat_pooling=True):
81
+ super().__init__()
82
+ assert (kernel_size >= 40)
83
+ kernel_size = [k - 1 if k % 2 == 0 else k for k in
84
+ [kernel_size, kernel_size // 2, kernel_size // 4]] # was 39,19,9
85
+
86
+ layers = [InceptionBackbone(input_channels=input_channels, kss=kernel_size, depth=depth,
87
+ bottleneck_size=bottleneck_size, nb_filters=nb_filters,
88
+ use_residual=use_residual)]
89
+
90
+ n_ks = len(kernel_size) + 1
91
+ # head
92
+ head = create_head1d(n_ks * nb_filters, nc=num_classes, lin_ftrs=lin_ftrs_head, ps=ps_head,
93
+ bn_final=bn_final_head, bn=bn_head, act=act_head,
94
+ concat_pooling=concat_pooling)
95
+ layers.append(head)
96
+ # layers.append(AdaptiveConcatPool1d())
97
+ # layers.append(Flatten())
98
+ # layers.append(nn.Linear(2*n_ks*nb_filters, num_classes))
99
+ self.layers = nn.Sequential(*layers)
100
+
101
+ def forward(self, x):
102
+ return self.layers(x)
103
+
104
+ def get_layer_groups(self):
105
+ depth = self.layers[0].depth
106
+ if depth > 3:
107
+ return (self.layers[0].im[3:], self.layers[0].sk[1:]), self.layers[-1]
108
+ else:
109
+ return self.layers[-1]
110
+
111
+ def get_output_layer(self):
112
+ return self.layers[-1][-1]
113
+
114
+ def set_output_layer(self, x):
115
+ self.layers[-1][-1] = x
116
+
117
+
118
+ def inception1d(**kwargs):
119
+ """
120
+ Constructs an Inception model
121
+ """
122
+ return Inception1d(**kwargs)
models/resnet1d.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+ # Standard resnet
5
+ from models.basicconv1d import create_head1d
6
+
7
+
8
+ def conv(in_planes, out_planes, stride=1, kernel_size=3):
9
+ """convolution with padding"""
10
+ return nn.Conv1d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
11
+ padding=(kernel_size - 1) // 2, bias=False)
12
+
13
+
14
+ class BasicBlock1d(nn.Module):
15
+ expansion = 1
16
+
17
+ def __init__(self, inplanes, planes, stride=1, kernel_size=None, down_sample=None):
18
+ if kernel_size is None:
19
+ kernel_size = [3, 3]
20
+ super().__init__()
21
+
22
+ if isinstance(kernel_size, int): kernel_size = [kernel_size, kernel_size // 2 + 1]
23
+
24
+ self.conv1 = conv(inplanes, planes, stride=stride, kernel_size=kernel_size[0])
25
+ self.bn1 = nn.BatchNorm1d(planes)
26
+ self.relu = nn.ReLU(inplace=True)
27
+ self.conv2 = conv(planes, planes, kernel_size=kernel_size[1])
28
+ self.bn2 = nn.BatchNorm1d(planes)
29
+ self.down_sample = down_sample
30
+ self.stride = stride
31
+
32
+ def forward(self, x):
33
+ residual = x
34
+
35
+ out = self.conv1(x)
36
+ out = self.bn1(out)
37
+ out = self.relu(out)
38
+
39
+ out = self.conv2(out)
40
+ out = self.bn2(out)
41
+
42
+ if self.down_sample is not None:
43
+ residual = self.down_sample(x)
44
+
45
+ out += residual
46
+ out = self.relu(out)
47
+
48
+ return out
49
+
50
+
51
+ class Bottleneck1d(nn.Module):
52
+ expansion = 4
53
+
54
+ def __init__(self, inplanes, planes, stride=1, kernel_size=3, down_sample=None):
55
+ super().__init__()
56
+
57
+ self.conv1 = nn.Conv1d(inplanes, planes, kernel_size=1, bias=False)
58
+ self.bn1 = nn.BatchNorm1d(planes)
59
+ self.conv2 = nn.Conv1d(planes, planes, kernel_size=kernel_size, stride=stride,
60
+ padding=(kernel_size - 1) // 2, bias=False)
61
+ self.bn2 = nn.BatchNorm1d(planes)
62
+ self.conv3 = nn.Conv1d(planes, planes * 4, kernel_size=1, bias=False)
63
+ self.bn3 = nn.BatchNorm1d(planes * 4)
64
+ self.relu = nn.ReLU(inplace=True)
65
+ self.down_sample = down_sample
66
+ self.stride = stride
67
+
68
+ def forward(self, x):
69
+ residual = x
70
+
71
+ out = self.conv1(x)
72
+ out = self.bn1(out)
73
+ out = self.relu(out)
74
+
75
+ out = self.conv2(out)
76
+ out = self.bn2(out)
77
+ out = self.relu(out)
78
+
79
+ out = self.conv3(out)
80
+ out = self.bn3(out)
81
+
82
+ if self.down_sample is not None:
83
+ residual = self.down_sample(x)
84
+
85
+ out += residual
86
+ out = self.relu(out)
87
+
88
+ return out
89
+
90
+
91
+ class ResNet1d(nn.Sequential):
92
+ """1d adaptation of the torchvision resnet"""
93
+
94
+ def __init__(self, block, layers, kernel_size=3, num_classes=2, input_channels=3, inplanes=64, fix_feature_dim=True,
95
+ kernel_size_stem=None, stride_stem=2, pooling_stem=True, stride=2, lin_ftrs_head=None, ps_head=0.5,
96
+ bn_final_head=False, bn_head=True, act_head="relu", concat_pooling=True):
97
+ self.inplanes = inplanes
98
+
99
+ layers_tmp = []
100
+
101
+ if kernel_size_stem is None:
102
+ kernel_size_stem = kernel_size[0] if isinstance(kernel_size, list) else kernel_size
103
+ # stem
104
+ layers_tmp.append(nn.Conv1d(input_channels, inplanes, kernel_size=kernel_size_stem, stride=stride_stem,
105
+ padding=(kernel_size_stem - 1) // 2, bias=False))
106
+ layers_tmp.append(nn.BatchNorm1d(inplanes))
107
+ layers_tmp.append(nn.ReLU(inplace=True))
108
+ if pooling_stem is True:
109
+ layers_tmp.append(nn.MaxPool1d(kernel_size=3, stride=2, padding=1))
110
+ # backbone
111
+ for i, l in enumerate(layers):
112
+ if i == 0:
113
+ layers_tmp.append(self._make_layer(block, inplanes, layers[0], kernel_size=kernel_size))
114
+ else:
115
+ layers_tmp.append(
116
+ self._make_layer(block, inplanes if fix_feature_dim else (2 ** i) * inplanes, layers[i],
117
+ stride=stride, kernel_size=kernel_size))
118
+
119
+ # head
120
+ # layers_tmp.append(nn.AdaptiveAvgPool1d(1))
121
+ # layers_tmp.append(Flatten())
122
+ # layers_tmp.append(nn.Linear((inplanes if fix_feature_dim else (2**len(layers)*inplanes)) * block.expansion, num_classes))
123
+
124
+ head = create_head1d(
125
+ (inplanes if fix_feature_dim else (2 ** len(layers) * inplanes)) * block.expansion, nc=num_classes,
126
+ lin_ftrs=lin_ftrs_head, ps=ps_head, bn_final=bn_final_head, bn=bn_head, act=act_head,
127
+ concat_pooling=concat_pooling)
128
+ layers_tmp.append(head)
129
+
130
+ super().__init__()
131
+
132
+ def _make_layer(self, block, planes, blocks, stride=1, kernel_size=3):
133
+ down_sample = None
134
+
135
+ if stride != 1 or self.inplanes != planes * block.expansion:
136
+ down_sample = nn.Sequential(
137
+ nn.Conv1d(self.inplanes, planes * block.expansion,
138
+ kernel_size=1, stride=stride, bias=False),
139
+ nn.BatchNorm1d(planes * block.expansion),
140
+ )
141
+
142
+ layers = [block(self.inplanes, planes, stride, kernel_size, down_sample)]
143
+ self.inplanes = planes * block.expansion
144
+ for i in range(1, blocks):
145
+ layers.append(block(self.inplanes, planes))
146
+
147
+ return nn.Sequential(*layers)
148
+
149
+ def get_layer_groups(self):
150
+ return self[6], self[-1]
151
+
152
+ def get_output_layer(self):
153
+ return self[-1][-1]
154
+
155
+ def set_output_layer(self, x):
156
+ self[-1][-1] = x
157
+
158
+
159
+ def resnet1d18(**kwargs):
160
+ """
161
+ Constructs a ResNet-18 model.
162
+ """
163
+ return ResNet1d(BasicBlock1d, [2, 2, 2, 2], **kwargs)
164
+
165
+
166
+ def resnet1d34(**kwargs):
167
+ """
168
+ Constructs a ResNet-34 model.
169
+ """
170
+ return ResNet1d(BasicBlock1d, [3, 4, 6, 3], **kwargs)
171
+
172
+
173
+ def resnet1d50(**kwargs):
174
+ """
175
+ Constructs a ResNet-50 model.
176
+ """
177
+ return ResNet1d(Bottleneck1d, [3, 4, 6, 3], **kwargs)
178
+
179
+
180
+ def resnet1d101(**kwargs):
181
+ """
182
+ Constructs a ResNet-101 model.
183
+ """
184
+ return ResNet1d(Bottleneck1d, [3, 4, 23, 3], **kwargs)
185
+
186
+
187
+ def resnet1d152(**kwargs):
188
+ """
189
+ Constructs a ResNet-152 model.
190
+ """
191
+ return ResNet1d(Bottleneck1d, [3, 8, 36, 3], **kwargs)
192
+
193
+
194
+ # original used kernel_size_stem = 8
195
+ def resnet1d_wang(**kwargs):
196
+ if not ("kernel_size" in kwargs.keys()):
197
+ kwargs["kernel_size"] = [5, 3]
198
+ if not ("kernel_size_stem" in kwargs.keys()):
199
+ kwargs["kernel_size_stem"] = 7
200
+ if not ("stride_stem" in kwargs.keys()):
201
+ kwargs["stride_stem"] = 1
202
+ if not ("pooling_stem" in kwargs.keys()):
203
+ kwargs["pooling_stem"] = False
204
+ if not ("inplanes" in kwargs.keys()):
205
+ kwargs["inplanes"] = 128
206
+
207
+ return ResNet1d(BasicBlock1d, [1, 1, 1], **kwargs)
208
+
209
+
210
+ def resnet1d(**kwargs):
211
+ """
212
+ Constructs a custom ResNet model.
213
+ """
214
+ return ResNet1d(BasicBlock1d, **kwargs)
215
+
216
+
217
+ # wide resnet adopted from fastai wrn
218
+
219
+ def noop(x): return x
220
+
221
+
222
+ def conv1d(ni: int, nf: int, ks: int = 3, stride: int = 1, padding: int = None, bias=False) -> nn.Conv1d:
223
+ "Create `nn.Conv1d` layer: `ni` inputs, `nf` outputs, `ks` kernel size. `padding` defaults to `k//2`."
224
+ if padding is None: padding = ks // 2
225
+ return nn.Conv1d(ni, nf, kernel_size=ks, stride=stride, padding=padding, bias=bias)
226
+
227
+
228
+ def _bn1d(ni, init_zero=False):
229
+ "Batchnorm layer with 0 initialization"
230
+ m = nn.BatchNorm1d(ni)
231
+ m.weight.data.fill_(0 if init_zero else 1)
232
+ m.bias.data.zero_()
233
+ return m
234
+
235
+
236
+ def bn_relu_conv1d(ni, nf, ks, stride, init_zero=False):
237
+ bn_initzero = _bn1d(ni, init_zero=init_zero)
238
+ return nn.Sequential(bn_initzero, nn.ReLU(inplace=True), conv1d(ni, nf, ks, stride))
239
+
240
+
241
+ class BasicBlock1dwrn(nn.Module):
242
+ def __init__(self, ni, nf, stride, drop_p=0.0, ks=3):
243
+ super().__init__()
244
+ if isinstance(ks, int):
245
+ ks = [ks, ks // 2 + 1]
246
+ self.bn = nn.BatchNorm1d(ni)
247
+ self.conv1 = conv1d(ni, nf, ks[0], stride)
248
+ self.conv2 = bn_relu_conv1d(nf, nf, ks[0], 1)
249
+ self.drop = nn.Dropout(drop_p, inplace=True) if drop_p else None
250
+ self.shortcut = conv1d(ni, nf, ks[1], stride) if (
251
+ ni != nf or stride > 1) else noop # adapted to make it work for fix_feature_dim=True
252
+
253
+ def forward(self, x):
254
+ x2 = F.relu(self.bn(x), inplace=True)
255
+ r = self.shortcut(x2)
256
+ x = self.conv1(x2)
257
+ if self.drop: x = self.drop(x)
258
+ x = self.conv2(x) * 0.2
259
+ return x.add_(r)
260
+
261
+
262
+ def _make_group(N, ni, nf, block, stride, drop_p, ks=3):
263
+ return [block(ni if i == 0 else nf, nf, stride if i == 0 else 1, drop_p, ks=ks) for i in range(N)]
264
+
265
+
266
+ class WideResNet1d(nn.Sequential):
267
+ def __init__(self, input_channels: int, num_groups: int, N: int, num_classes: int, k: int = 1, drop_p: float = 0.0,
268
+ start_nf: int = 16, fix_feature_dim=True, kernel_size=5, lin_ftrs_head=None, ps_head=0.5,
269
+ bn_final_head=False, bn_head=True, act_head="relu", concat_pooling=True):
270
+ super().__init__()
271
+ n_channels = [start_nf]
272
+
273
+ for i in range(num_groups): n_channels.append(start_nf if fix_feature_dim else start_nf * (2 ** i) * k)
274
+
275
+ layers = [conv1d(input_channels, n_channels[0], 3, 1)] # conv1 stem
276
+ for i in range(num_groups):
277
+ layers += _make_group(N, n_channels[i], n_channels[i + 1], BasicBlock1dwrn,
278
+ (1 if i == 0 else 2), drop_p, ks=kernel_size)
279
+
280
+ # layers += [nn.BatchNorm1d(n_channels[-1]), nn.ReLU(inplace=True), nn.AdaptiveAvgPool1d(1),
281
+ # Flatten(), nn.Linear(n_channels[-1], num_classes)]
282
+ head = create_head1d(n_channels[-1], nc=num_classes, lin_ftrs=lin_ftrs_head, ps=ps_head,
283
+ bn_final=bn_final_head, bn=bn_head, act=act_head,
284
+ concat_pooling=concat_pooling)
285
+ layers.append(head)
286
+
287
+ super().__init__()
288
+
289
+ def get_layer_groups(self):
290
+ return self[6], self[-1]
291
+
292
+ def get_output_layer(self):
293
+ return self[-1][-1]
294
+
295
+ def set_output_layer(self, x):
296
+ self[-1][-1] = x
297
+
298
+
299
+ def wrn1d_22(**kwargs): return WideResNet1d(num_groups=3, N=3, k=6, drop_p=0., **kwargs)
models/rnn1d.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from fastai.layers import *
4
+ from fastai.core import *
5
+
6
+
7
+ class AdaptiveConcatPoolRNN(nn.Module):
8
+ def __init__(self, bidirectional):
9
+ super().__init__()
10
+ self.bidirectional = bidirectional
11
+
12
+ def forward(self, x):
13
+ # input shape bs, ch, ts
14
+ t1 = nn.AdaptiveAvgPool1d(1)(x)
15
+ t2 = nn.AdaptiveMaxPool1d(1)(x)
16
+
17
+ if self.bidirectional is False:
18
+ t3 = x[:, :, -1]
19
+ else:
20
+ channels = x.size()[1]
21
+ t3 = torch.cat([x[:, :channels, -1], x[:, channels:, 0]], 1)
22
+ out = torch.cat([t1.squeeze(-1), t2.squeeze(-1), t3], 1) # output shape bs, 3*ch
23
+ return out
24
+
25
+
26
+ class RNN1d(nn.Sequential):
27
+ def __init__(self, input_channels, num_classes, lstm=True, hidden_dim=256, num_layers=2, bidirectional=False,
28
+ ps_head=0.5, act_head="relu", lin_ftrs_head=None, bn=True):
29
+ # bs, ch, ts -> ts, bs, ch
30
+ layers_tmp = [Lambda(lambda x: x.transpose(1, 2)), Lambda(lambda x: x.transpose(0, 1))]
31
+ # LSTM
32
+ if lstm:
33
+ layers_tmp.append(nn.LSTM(input_size=input_channels, hidden_size=hidden_dim, num_layers=num_layers,
34
+ bidirectional=bidirectional))
35
+ else:
36
+ layers_tmp.append(nn.GRU(input_size=input_channels, hidden_size=hidden_dim, num_layers=num_layers,
37
+ bidirectional=bidirectional))
38
+ # pooling
39
+ layers_tmp.append(Lambda(lambda x: x[0].transpose(0, 1)))
40
+ layers_tmp.append(Lambda(lambda x: x.transpose(1, 2)))
41
+
42
+ layers_head = [AdaptiveConcatPoolRNN(bidirectional)]
43
+
44
+ # classifier
45
+ nf = 3 * hidden_dim if bidirectional is False else 6 * hidden_dim
46
+ lin_ftrs_head = [nf, num_classes] if lin_ftrs_head is None else [nf] + lin_ftrs_head + [num_classes]
47
+ ps_head = listify(ps_head)
48
+ if len(ps_head) == 1:
49
+ ps_head = [ps_head[0] / 2] * (len(lin_ftrs_head) - 2) + ps_head
50
+ actns = [nn.ReLU(inplace=True) if act_head == "relu" else nn.ELU(inplace=True)] * (
51
+ len(lin_ftrs_head) - 2) + [None]
52
+
53
+ for ni, no, p, actn in zip(lin_ftrs_head[:-1], lin_ftrs_head[1:], ps_head, actns):
54
+ layers_head += bn_drop_lin(ni, no, bn, p, actn)
55
+ layers_head = nn.Sequential(*layers_head)
56
+ layers_tmp.append(layers_head)
57
+
58
+ super().__init__()
59
+
60
+ def get_layer_groups(self):
61
+ return self[-1],
62
+
63
+ def get_output_layer(self):
64
+ return self[-1][-1]
65
+
66
+ def set_output_layer(self, x):
67
+ self[-1][-1] = x
models/wavelet.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.linear_model import LogisticRegression
2
+ from sklearn.multiclass import OneVsRestClassifier
3
+ from models.base_model import ClassificationModel
4
+ import pickle
5
+ from tqdm import tqdm
6
+ import numpy as np
7
+ from sklearn.ensemble import RandomForestClassifier
8
+ import pywt
9
+ import scipy.stats
10
+ import multiprocessing
11
+ from collections import Counter
12
+ from keras.layers import Dropout, Dense, Input
13
+ from keras.models import Model
14
+ from keras.models import load_model
15
+ from keras.callbacks import ModelCheckpoint
16
+ from sklearn.preprocessing import StandardScaler
17
+
18
+
19
+ def calculate_entropy(list_values):
20
+ counter_values = Counter(list_values).most_common()
21
+ probabilities = [elem[1] / len(list_values) for elem in counter_values]
22
+ entropy = scipy.stats.entropy(probabilities)
23
+ return entropy
24
+
25
+
26
+ def calculate_statistics(list_values):
27
+ n5 = np.nanpercentile(list_values, 5)
28
+ n25 = np.nanpercentile(list_values, 25)
29
+ n75 = np.nanpercentile(list_values, 75)
30
+ n95 = np.nanpercentile(list_values, 95)
31
+ median = np.nanpercentile(list_values, 50)
32
+ mean = np.nanmean(list_values)
33
+ std = np.nanstd(list_values)
34
+ var = np.nanvar(list_values)
35
+ rms = np.nanmean(np.sqrt(list_values ** 2))
36
+ return [n5, n25, n75, n95, median, mean, std, var, rms]
37
+
38
+
39
+ def calculate_crossings(list_values):
40
+ zero_crossing_indices = np.nonzero(np.diff(np.array(list_values) > 0))[0]
41
+ no_zero_crossings = len(zero_crossing_indices)
42
+ mean_crossing_indices = np.nonzero(np.diff(np.array(list_values) > np.nanmean(list_values)))[0]
43
+ no_mean_crossings = len(mean_crossing_indices)
44
+ return [no_zero_crossings, no_mean_crossings]
45
+
46
+
47
+ def get_features(list_values):
48
+ entropy = calculate_entropy(list_values)
49
+ crossings = calculate_crossings(list_values)
50
+ statistics = calculate_statistics(list_values)
51
+ return [entropy] + crossings + statistics
52
+
53
+
54
+ def get_single_ecg_features(signal, waveletname='db6'):
55
+ features = []
56
+ for channel in signal.T:
57
+ list_coeff = pywt.wavedec(channel, wavelet=waveletname, level=5)
58
+ channel_features = []
59
+ for coeff in list_coeff:
60
+ channel_features += get_features(coeff)
61
+ features.append(channel_features)
62
+ return np.array(features).flatten()
63
+
64
+
65
+ def get_ecg_features(ecg_data, parallel=True):
66
+ if parallel:
67
+ pool = multiprocessing.Pool(18)
68
+ return np.array(pool.map(get_single_ecg_features, ecg_data))
69
+ else:
70
+ list_features = []
71
+ for signal in tqdm(ecg_data):
72
+ features = get_single_ecg_features(signal)
73
+ list_features.append(features)
74
+ return np.array(list_features)
75
+
76
+
77
+ # for keras models
78
+ # def keras_macro_auroc(y_true, y_pred):
79
+ # return tf.py_func(macro_auroc, (y_true, y_pred), tf.double)
80
+
81
+ class WaveletModel(ClassificationModel):
82
+ def __init__(self, name, n_classes, freq, outputfolder, input_shape, regularizer_C=.001, classifier='RF'):
83
+ # Disclaimer: This model assumes equal shapes across all samples!
84
+ # standard parameters
85
+ super().__init__()
86
+ self.name = name
87
+ self.outputfolder = outputfolder
88
+ self.n_classes = n_classes
89
+ self.freq = freq
90
+ self.regularizer_C = regularizer_C
91
+ self.classifier = classifier
92
+ self.dropout = .25
93
+ self.activation = 'relu'
94
+ self.final_activation = 'sigmoid'
95
+ self.n_dense_dim = 128
96
+ self.epochs = 30
97
+
98
+ def fit(self, X_train, y_train, X_val, y_val):
99
+ XF_train = get_ecg_features(X_train)
100
+ XF_val = get_ecg_features(X_val)
101
+
102
+ if self.classifier == 'LR':
103
+ if self.n_classes > 1:
104
+ clf = OneVsRestClassifier(
105
+ LogisticRegression(C=self.regularizer_C, solver='lbfgs', max_iter=1000, n_jobs=-1))
106
+ else:
107
+ clf = LogisticRegression(C=self.regularizer_C, solver='lbfgs', max_iter=1000, n_jobs=-1)
108
+ clf.fit(XF_train, y_train)
109
+ pickle.dump(clf, open(self.outputfolder + 'clf.pkl', 'wb'))
110
+ elif self.classifier == 'RF':
111
+ clf = RandomForestClassifier(n_estimators=1000, n_jobs=16)
112
+ clf.fit(XF_train, y_train)
113
+ pickle.dump(clf, open(self.outputfolder + 'clf.pkl', 'wb'))
114
+ elif self.classifier == 'NN':
115
+ # standardize input data
116
+ ss = StandardScaler()
117
+ XFT_train = ss.fit_transform(XF_train)
118
+ XFT_val = ss.transform(XF_val)
119
+ pickle.dump(ss, open(self.outputfolder + 'ss.pkl', 'wb'))
120
+ # classification stage
121
+ input_x = Input(shape=(XFT_train.shape[1],))
122
+ x = Dense(self.n_dense_dim, activation=self.activation)(input_x)
123
+ x = Dropout(self.dropout)(x)
124
+ y = Dense(self.n_classes, activation=self.final_activation)(x)
125
+ self.model = Model(input_x, y)
126
+
127
+ self.model.compile(optimizer='adamax', loss='binary_crossentropy') # , metrics=[keras_macro_auroc])
128
+ # monitor validation error
129
+ mc_loss = ModelCheckpoint(self.outputfolder + 'best_loss_model.h5', monitor='val_loss', mode='min',
130
+ verbose=1, save_best_only=True)
131
+ # mc_score = ModelCheckpoint(self.output_folder +'best_score_model.h5', monitor='val_keras_macro_auroc', mode='max', verbose=1, save_best_only=True)
132
+ self.model.fit(XFT_train, y_train, validation_data=(XFT_val, y_val), epochs=self.epochs, batch_size=128,
133
+ callbacks=[mc_loss]) # , mc_score])
134
+ self.model.save(self.outputfolder + 'last_model.h5')
135
+
136
+ def predict(self, X):
137
+ XF = get_ecg_features(X)
138
+ if self.classifier == 'LR':
139
+ clf = pickle.load(open(self.outputfolder + 'clf.pkl', 'rb'))
140
+ if self.n_classes > 1:
141
+ return clf.predict_proba(XF)
142
+ else:
143
+ return clf.predict_proba(XF)[:, 1][:, np.newaxis]
144
+ elif self.classifier == 'RF':
145
+ clf = pickle.load(open(self.outputfolder + 'clf.pkl', 'rb'))
146
+ y_pred = clf.predict_proba(XF)
147
+ if self.n_classes > 1:
148
+ return np.array([yi[:, 1] for yi in y_pred]).T
149
+ else:
150
+ return y_pred[:, 1][:, np.newaxis]
151
+ elif self.classifier == 'NN':
152
+ ss = pickle.load(open(self.outputfolder + 'ss.pkl', 'rb')) #
153
+ XFT = ss.transform(XF)
154
+ model = load_model(
155
+ self.outputfolder + 'best_loss_model.h5')
156
+ # 'best_score_model.h5', custom_objects={
157
+ # 'keras_macro_auroc': keras_macro_auroc})
158
+ return model.predict(XFT)
models/xresnet1d.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from enum import Enum
4
+ import re
5
+ # delegates
6
+ import inspect
7
+
8
+ from torch.nn.utils import weight_norm, spectral_norm
9
+
10
+ from models.basicconv1d import create_head1d
11
+
12
+
13
+ def delegates(to=None, keep=False):
14
+ """Decorator: replace `**kwargs` in signature with params from `to`"""
15
+
16
+ def _f(f):
17
+ if to is None:
18
+ to_f, from_f = f.__base__.__init__, f.__init__
19
+ else:
20
+ to_f, from_f = to, f
21
+ sig = inspect.signature(from_f)
22
+ sigd = dict(sig.parameters)
23
+ k = sigd.pop('kwargs')
24
+ s2 = {k: v for k, v in inspect.signature(to_f).parameters.items()
25
+ if v.default != inspect.Parameter.empty and k not in sigd}
26
+ sigd.update(s2)
27
+ if keep: sigd['kwargs'] = k
28
+ from_f.__signature__ = sig.replace(parameters=sigd.values())
29
+ return f
30
+
31
+ return _f
32
+
33
+
34
+ def store_attr(self, nms):
35
+ """Store params named in comma-separated `nms` from calling context into attrs in `self`"""
36
+ mod = inspect.currentframe().f_back.f_locals
37
+ for n in re.split(', *', nms): setattr(self, n, mod[n])
38
+
39
+
40
+ NormType = Enum('NormType', 'Batch BatchZero Weight Spectral Instance InstanceZero')
41
+
42
+
43
+ def _conv_func(ndim=2, transpose=False):
44
+ """Return the proper conv `ndim` function, potentially `transposed`."""
45
+ assert 1 <= ndim <= 3
46
+ return getattr(nn, f'Conv{"Transpose" if transpose else ""}{ndim}d')
47
+
48
+
49
+ def init_default(m, func=nn.init.kaiming_normal_):
50
+ """Initialize `m` weights with `func` and set `bias` to 0."""
51
+ if func and hasattr(m, 'weight'): func(m.weight)
52
+ with torch.no_grad():
53
+ if getattr(m, 'bias', None) is not None: m.bias.fill_(0.)
54
+ return m
55
+
56
+
57
+ def _get_norm(prefix, nf, ndim=2, zero=False, **kwargs):
58
+ """Norm layer with `nf` features and `ndim` initialized depending on `norm_type`."""
59
+ assert 1 <= ndim <= 3
60
+ bn = getattr(nn, f"{prefix}{ndim}d")(nf, **kwargs)
61
+ if bn.affine:
62
+ bn.bias.data.fill_(1e-3)
63
+ bn.weight.data.fill_(0. if zero else 1.)
64
+ return bn
65
+
66
+
67
+ def BatchNorm(nf, ndim=2, norm_type=NormType.Batch, **kwargs):
68
+ """BatchNorm layer with `nf` features and `ndim` initialized depending on `norm_type`."""
69
+ return _get_norm('BatchNorm', nf, ndim, zero=norm_type == NormType.BatchZero, **kwargs)
70
+
71
+
72
+ class ConvLayer(nn.Sequential):
73
+ """Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and `norm_type` layers."""
74
+
75
+ def __init__(self, ni, nf, ks=3, stride=1, padding=None, bias=None, ndim=2, norm_type=NormType.Batch, bn_1st=True,
76
+ act_cls=nn.ReLU, transpose=False, init=nn.init.kaiming_normal_, xtra=None, **kwargs):
77
+ if padding is None: padding = ((ks - 1) // 2 if not transpose else 0)
78
+ bn = norm_type in (NormType.Batch, NormType.BatchZero)
79
+ inn = norm_type in (NormType.Instance, NormType.InstanceZero)
80
+ if bias is None: bias = not (bn or inn)
81
+ conv_func = _conv_func(ndim, transpose=transpose)
82
+ conv = init_default(conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding, **kwargs),
83
+ init)
84
+ if norm_type == NormType.Weight:
85
+ conv = weight_norm(conv)
86
+ elif norm_type == NormType.Spectral:
87
+ conv = spectral_norm(conv)
88
+ layers = [conv]
89
+ act_bn = []
90
+ if act_cls is not None: act_bn.append(act_cls())
91
+ if bn: act_bn.append(BatchNorm(nf, norm_type=norm_type, ndim=ndim))
92
+ if inn: act_bn.append(nn.InstanceNorm2d(nf, norm_type=norm_type, ndim=ndim))
93
+ if bn_1st: act_bn.reverse()
94
+ layers += act_bn
95
+ if xtra: layers.append(xtra)
96
+ super().__init__()
97
+
98
+
99
+ def AdaptiveAvgPool(sz=1, ndim=2):
100
+ """nn.AdaptiveAvgPool layer for `ndim`"""
101
+ assert 1 <= ndim <= 3
102
+ return getattr(nn, f"AdaptiveAvgPool{ndim}d")(sz)
103
+
104
+
105
+ def MaxPool(ks=2, stride=None, padding=0, ndim=2, ceil_mode=False):
106
+ """nn.MaxPool layer for `ndim`"""
107
+ assert 1 <= ndim <= 3
108
+ return getattr(nn, f"MaxPool{ndim}d")(ks, stride=stride, padding=padding)
109
+
110
+
111
+ def AvgPool(ks=2, stride=None, padding=0, ndim=2, ceil_mode=False):
112
+ """nn.AvgPool layer for `ndim`"""
113
+ assert 1 <= ndim <= 3
114
+ return getattr(nn, f"AvgPool{ndim}d")(ks, stride=stride, padding=padding, ceil_mode=ceil_mode)
115
+
116
+
117
+ class ResBlock(nn.Module):
118
+ "Resnet block from `ni` to `nh` with `stride`"
119
+
120
+ @delegates(ConvLayer.__init__)
121
+ def __init__(self, expansion, ni, nf, stride=1, kernel_size=3, groups=1, reduction=None, nh1=None, nh2=None,
122
+ dw=False, g2=1,
123
+ sa=False, sym=False, norm_type=NormType.Batch, act_cls=nn.ReLU, ndim=2,
124
+ pool=AvgPool, pool_first=True, **kwargs):
125
+ super().__init__()
126
+ norm2 = (NormType.BatchZero if norm_type == NormType.Batch else
127
+ NormType.InstanceZero if norm_type == NormType.Instance else norm_type)
128
+ if nh2 is None: nh2 = nf
129
+ if nh1 is None: nh1 = nh2
130
+ nf, ni = nf * expansion, ni * expansion
131
+ k0 = dict(norm_type=norm_type, act_cls=act_cls, ndim=ndim, **kwargs)
132
+ k1 = dict(norm_type=norm2, act_cls=None, ndim=ndim, **kwargs)
133
+ layers = [ConvLayer(ni, nh2, kernel_size, stride=stride, groups=ni if dw else groups, **k0),
134
+ ConvLayer(nh2, nf, kernel_size, groups=g2, **k1)
135
+ ] if expansion == 1 else [
136
+ ConvLayer(ni, nh1, 1, **k0),
137
+ ConvLayer(nh1, nh2, kernel_size, stride=stride, groups=nh1 if dw else groups, **k0),
138
+ ConvLayer(nh2, nf, 1, groups=g2, **k1)]
139
+ self.convs = nn.Sequential(*layers)
140
+ convpath = [self.convs]
141
+ if reduction: convpath.append(nn.SEModule(nf, reduction=reduction, act_cls=act_cls))
142
+ if sa: convpath.append(nn.SimpleSelfAttention(nf, ks=1, sym=sym))
143
+ self.convpath = nn.Sequential(*convpath)
144
+ idpath = []
145
+ if ni != nf: idpath.append(ConvLayer(ni, nf, 1, act_cls=None, ndim=ndim, **kwargs))
146
+ if stride != 1: idpath.insert((1, 0)[pool_first], pool(2, ndim=ndim, ceil_mode=True))
147
+ self.idpath = nn.Sequential(*idpath)
148
+ self.act = nn.ReLU(inplace=True) if act_cls is nn.ReLU else act_cls()
149
+
150
+ def forward(self, x):
151
+ return self.act(self.convpath(x) + self.idpath(x))
152
+
153
+
154
+ ######################### adapted from vison.models.xresnet
155
+ def init_cnn(m):
156
+ if getattr(m, 'bias', None) is not None: nn.init.constant_(m.bias, 0)
157
+ if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): nn.init.kaiming_normal_(m.weight)
158
+ for l in m.children(): init_cnn(l)
159
+
160
+
161
+ class XResNet1d(nn.Sequential):
162
+ @delegates(ResBlock)
163
+ def __init__(self, block, expansion, layers, p=0.0, input_channels=3, num_classes=1000, stem_szs=(32, 32, 64),
164
+ kernel_size=5, kernel_size_stem=5,
165
+ widen=1.0, sa=False, act_cls=nn.ReLU, lin_ftrs_head=None, ps_head=0.5, bn_final_head=False,
166
+ bn_head=True, act_head="relu", concat_pooling=True, **kwargs):
167
+ store_attr(self, 'block,expansion,act_cls')
168
+ stem_szs = [input_channels, *stem_szs]
169
+ stem = [ConvLayer(stem_szs[i], stem_szs[i + 1], ks=kernel_size_stem, stride=2 if i == 0 else 1, act_cls=act_cls,
170
+ ndim=1)
171
+ for i in range(3)]
172
+
173
+ # block_szs = [int(o*widen) for o in [64,128,256,512] +[256]*(len(layers)-4)]
174
+ block_szs = [int(o * widen) for o in [64, 64, 64, 64] + [32] * (len(layers) - 4)]
175
+ block_szs = [64 // expansion] + block_szs
176
+ blocks = [self._make_layer(ni=block_szs[i], nf=block_szs[i + 1], blocks=l,
177
+ stride=1 if i == 0 else 2, kernel_size=kernel_size, sa=sa and i == len(layers) - 4,
178
+ ndim=1, **kwargs)
179
+ for i, l in enumerate(layers)]
180
+
181
+ head = create_head1d(block_szs[-1] * expansion, nc=num_classes, lin_ftrs=lin_ftrs_head, ps=ps_head,
182
+ bn_final=bn_final_head, bn=bn_head, act=act_head,
183
+ concat_pooling=concat_pooling)
184
+
185
+ super().__init__(nn.MaxPool1d(kernel_size=3, stride=2, padding=1), head)
186
+ init_cnn(self)
187
+
188
+ def _make_layer(self, ni, nf, blocks, stride, kernel_size, sa, **kwargs):
189
+ return nn.Sequential(
190
+ *[self.block(self.expansion, ni if i == 0 else nf, nf, stride=stride if i == 0 else 1,
191
+ kernel_size=kernel_size, sa=sa and i == (blocks - 1), act_cls=self.act_cls, **kwargs)
192
+ for i in range(blocks)])
193
+
194
+ def get_layer_groups(self):
195
+ return self[3], self[-1]
196
+
197
+ def get_output_layer(self):
198
+ return self[-1][-1]
199
+
200
+ def set_output_layer(self, x):
201
+ self[-1][-1] = x
202
+
203
+
204
+ # xresnets
205
+ def _xresnet1d(expansion, layers, **kwargs):
206
+ return XResNet1d(ResBlock, expansion, layers, **kwargs)
207
+
208
+
209
+ def xresnet1d18(**kwargs): return _xresnet1d(1, [2, 2, 2, 2], **kwargs)
210
+
211
+
212
+ def xresnet1d34(**kwargs): return _xresnet1d(1, [3, 4, 6, 3], **kwargs)
213
+
214
+
215
+ def xresnet1d50(**kwargs): return _xresnet1d(4, [3, 4, 6, 3], **kwargs)
216
+
217
+
218
+ def xresnet1d101(**kwargs): return _xresnet1d(4, [3, 4, 23, 3], **kwargs)
219
+
220
+
221
+ def xresnet1d152(**kwargs): return _xresnet1d(4, [3, 8, 36, 3], **kwargs)
222
+
223
+
224
+ def xresnet1d18_deep(**kwargs): return _xresnet1d(1, [2, 2, 2, 2, 1, 1], **kwargs)
225
+
226
+
227
+ def xresnet1d34_deep(**kwargs): return _xresnet1d(1, [3, 4, 6, 3, 1, 1], **kwargs)
228
+
229
+
230
+ def xresnet1d50_deep(**kwargs): return _xresnet1d(4, [3, 4, 6, 3, 1, 1], **kwargs)
231
+
232
+
233
+ def xresnet1d18_deeper(**kwargs): return _xresnet1d(1, [2, 2, 1, 1, 1, 1, 1, 1], **kwargs)
234
+
235
+
236
+ def xresnet1d34_deeper(**kwargs): return _xresnet1d(1, [3, 4, 6, 3, 1, 1, 1, 1], **kwargs)
237
+
238
+
239
+ def xresnet1d50_deeper(**kwargs): return _xresnet1d(4, [3, 4, 6, 3, 1, 1, 1, 1], **kwargs)
output/.getkeep ADDED
File without changes
requirements.yml ADDED
Binary file (28.6 kB). View file
 
utilities/stratify.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from tqdm import tqdm
3
+
4
+
5
+ def stratify_df(df, new_col_name, n_folds=10, nr_clean_folds=0):
6
+ # compute qualities as described in PTB-XL report
7
+ qualities = []
8
+ for i, row in df.iterrows():
9
+ q = 0
10
+ if 'validated_by_human' in df.columns:
11
+ if row.validated_by_human:
12
+ q = 1
13
+ qualities.append(q)
14
+ df['quality'] = qualities
15
+
16
+ # create stratified folds according to patients
17
+ pat_ids = np.array(sorted(list(set(df.patient_id.values))))
18
+ p_labels = []
19
+ p_qualities = []
20
+ ecgs_per_patient = []
21
+
22
+ for pid in tqdm(pat_ids):
23
+ sel = df[df.patient_id == pid]
24
+ l = np.concatenate([list(d.keys()) for d in sel.scp_codes.values])
25
+ if sel.sex.values[0] == 0:
26
+ gender = 'male'
27
+ else:
28
+ gender = 'female'
29
+ l = np.concatenate((l, [gender] * len(sel)))
30
+ for age in sel.age.values:
31
+ if age < 20:
32
+ l = np.concatenate((l, ['<20']))
33
+ elif 20 <= age < 40:
34
+ l = np.concatenate((l, ['20-40']))
35
+ elif 40 <= age < 60:
36
+ l = np.concatenate((l, ['40-60']))
37
+ elif 60 <= age < 80:
38
+ l = np.concatenate((l, ['60-80']))
39
+ elif age >= 80:
40
+ l = np.concatenate((l, ['>=80']))
41
+ p_labels.append(l)
42
+ ecgs_per_patient.append(len(sel))
43
+ p_qualities.append(sel.quality.min())
44
+ classes = sorted(list(set([item for sublist in p_labels for item in sublist])))
45
+
46
+ stratified_data_ids, stratified_data = stratify(p_labels, classes, [1 / n_folds] * n_folds, p_qualities,
47
+ ecgs_per_patient, nr_clean_folds)
48
+
49
+ df[new_col_name] = np.zeros(len(df)).astype(int)
50
+ for fold_i, fold_ids in tqdm(enumerate(stratified_data_ids)):
51
+ ipat_ids = [pat_ids[pid] for pid in fold_ids]
52
+ df[new_col_name][df.patient_id.isin(ipat_ids)] = fold_i + 1
53
+
54
+ return df
55
+
56
+
57
+ def stratify(data, classes, ratios, qualities, ecgs_per_patient, nr_clean_folds=1):
58
+ """Stratifying procedure. Modified from https://vict0rs.ch/2018/05/24/sample-multilabel-dataset/ (based on Sechidis 2011)
59
+
60
+ data is a list of lists: a list of labels, for each sample.
61
+ Each sample's labels should be ints, if they are one-hot encoded, use one_hot=True
62
+
63
+ classes is the list of classes each label can take
64
+
65
+ ratios is a list, summing to 1, of how the dataset should be split
66
+
67
+ qualities: quality per entry (only >0 can be assigned to clean folds; 4 will always be assigned to final fold)
68
+
69
+ ecgs_per_patient: list with number of ecgs per sample
70
+
71
+ nr_clean_folds: the last nr_clean_folds can only take clean entries
72
+
73
+ """
74
+ np.random.seed(0) # fix the random seed
75
+
76
+ # data is now always a list of lists; len(data) is the number of patients; data[i] is the list of all labels for
77
+ # patient i (possibly multiple identical entries)
78
+
79
+ # size is the number of ecgs
80
+ size = np.sum(ecgs_per_patient)
81
+
82
+ # Organize data per label: for each label l, per_label_data[l] contains the list of patients
83
+ # in data which have this label (potentially multiple identical entries)
84
+ per_label_data = {c: [] for c in classes}
85
+ for i, d in enumerate(data):
86
+ for l in d:
87
+ per_label_data[l].append(i)
88
+
89
+ # In order not to compute lengths each time, they are tracked here.
90
+ subset_sizes = [r * size for r in ratios] # list of subset_sizes in terms of ecgs
91
+ per_label_subset_sizes = {c: [r * len(per_label_data[c]) for r in ratios] for c in
92
+ classes} # dictionary with label: list of subset sizes in terms of patients
93
+
94
+ # For each subset we want, the set of sample-ids which should end up in it
95
+ stratified_data_ids = [set() for _ in range(len(ratios))] # initialize empty
96
+
97
+ # For each sample in the data set
98
+ print("Assigning patients to folds...")
99
+ size_prev = size + 1 # just for output
100
+ while size > 0:
101
+ if int(size_prev / 1000) > int(size / 1000):
102
+ print("Remaining patients/ecgs to distribute:", size, "non-empty labels:",
103
+ np.sum([1 for l, label_data in per_label_data.items() if len(label_data) > 0]))
104
+ size_prev = size
105
+ # Compute |Di|
106
+ lengths = {
107
+ l: len(label_data)
108
+ for l, label_data in per_label_data.items()
109
+ } # dictionary label: number of ecgs with this label that have not been assigned to a fold yet
110
+ try:
111
+ # Find label of smallest |Di|
112
+ label = min({k: v for k, v in lengths.items() if v > 0}, key=lengths.get)
113
+ except ValueError:
114
+ # If the dictionary in `min` is empty we get a Value Error.
115
+ # This can happen if there are unlabeled samples.
116
+ # In this case, `size` would be > 0 but only samples without label would remain.
117
+ # "No label" could be a class in itself: it's up to you to format your data accordingly.
118
+ break
119
+ # For each patient with label `label` get patient and corresponding counts
120
+ unique_samples, unique_counts = np.unique(per_label_data[label], return_counts=True)
121
+ idxs_sorted = np.argsort(unique_counts, kind='stable')[::-1]
122
+ unique_samples = unique_samples[
123
+ idxs_sorted] # this is a list of all patient ids with this label sort by size descending
124
+ unique_counts = unique_counts[idxs_sorted] # these are the corresponding counts
125
+
126
+ # loop through all patient ids with this label
127
+ for current_id, current_count in zip(unique_samples, unique_counts):
128
+
129
+ subset_sizes_for_label = per_label_subset_sizes[label] # current subset sizes for the chosen label
130
+
131
+ # if quality is bad remove clean folds (i.e. sample cannot be assigned to clean folds)
132
+ if qualities[current_id] < 1:
133
+ subset_sizes_for_label = subset_sizes_for_label[:len(ratios) - nr_clean_folds]
134
+
135
+ # Find argmax clj i.e. subset in greatest need of the current label
136
+ largest_subsets = np.argwhere(subset_sizes_for_label == np.amax(subset_sizes_for_label)).flatten()
137
+
138
+ # if there is a single best choice: assign it
139
+ if len(largest_subsets) == 1:
140
+ subset = largest_subsets[0]
141
+ # If there is more than one such subset, find the one in greatest need of any label
142
+ else:
143
+ largest_subsets2 = np.argwhere(np.array(subset_sizes)[largest_subsets] == np.amax(
144
+ np.array(subset_sizes)[largest_subsets])).flatten()
145
+ subset = largest_subsets[np.random.choice(largest_subsets2)]
146
+
147
+ # Store the sample's id in the selected subset
148
+ stratified_data_ids[subset].add(current_id)
149
+
150
+ # There is current_count fewer samples to distribute
151
+ size -= ecgs_per_patient[current_id]
152
+ # The selected subset needs current_count fewer samples
153
+ subset_sizes[subset] -= ecgs_per_patient[current_id]
154
+
155
+ # In the selected subset, there is one more example for each label
156
+ # the current sample has
157
+ for l in data[current_id]:
158
+ per_label_subset_sizes[l][subset] -= 1
159
+
160
+ # Remove the sample from the dataset, meaning from all per_label dataset created
161
+ for x in per_label_data.keys():
162
+ per_label_data[x] = [y for y in per_label_data[x] if y != current_id]
163
+
164
+ # Create the stratified dataset as a list of subsets, each containing the original labels
165
+ stratified_data_ids = [sorted(strat) for strat in stratified_data_ids]
166
+ stratified_data = [
167
+ [data[i] for i in strat] for strat in stratified_data_ids
168
+ ]
169
+
170
+ # Return both the stratified indexes, to be used to sample the `features` associated with your labels
171
+ # And the stratified labels dataset
172
+
173
+ return stratified_data_ids, stratified_data
utilities/timeseries_utils.py ADDED
@@ -0,0 +1,649 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.utils.data
4
+ from torch import nn
5
+ from pathlib import Path
6
+ from scipy.stats import iqr
7
+ import os
8
+ #Note: due to issues with the numpy rng for multiprocessing
9
+ #(https://github.com/pytorch/pytorch/issues/5059) that could be
10
+ #fixed by a custom worker_init_fn we use random throughout for convenience
11
+ import random
12
+ from skimage import transform
13
+ import warnings
14
+ warnings.filterwarnings("ignore", category=UserWarning)
15
+ from scipy.signal import butter, sosfilt, sosfiltfilt, sosfreqz
16
+ #https://stackoverflow.com/questions/12093594/how-to-implement-band-pass-butterworth-filter-with-scipy-signal-butter
17
+
18
+ def butter_filter(lowcut=10, highcut=20, fs=50, order=5, btype='band'): # image processing Butterworth filter
19
+ """returns butterworth filter with given specifications"""
20
+ nyq = 0.5 * fs
21
+ low = lowcut / nyq
22
+ high = highcut / nyq
23
+
24
+ sos = butter(order, [low, high] if btype == "band" else (low if btype == "low" else high), analog=False,
25
+ btype=btype, output='sos')
26
+ return sos
27
+
28
+
29
+ def butter_filter_frequency_response(filter):
30
+ """returns frequency response of a given filter (result of call of butter_filter)"""
31
+ w, h = sosfreqz(filter)
32
+ # gain vs. freq(Hz)
33
+ # plt.plot((fs * 0.5 / np.pi) * w, abs(h))
34
+ return w, h
35
+
36
+
37
+ def apply_butter_filter(data, filter, forwardbackward=True): # The function provides options for handling the edges of the signal.
38
+ """pass filter from call of butter_filter to data (assuming time axis at dimension 0)"""
39
+ if forwardbackward:
40
+ return sosfiltfilt(filter, data, axis=0)
41
+ else:
42
+ data = sosfilt(filter, data, axis=0)
43
+
44
+
45
+ def dataset_add_chunk_col(df, col="data"):
46
+ """add a chunk column to the dataset df"""
47
+ df["chunk"] = df.groupby(col).cumcount()
48
+
49
+
50
+ def dataset_add_length_col(df, col="data", data_folder=None):
51
+ """add a length column to the dataset df"""
52
+ df[col + "_length"] = df[col].apply(lambda x: len(np.load(x if data_folder is None else data_folder / x)))
53
+
54
+
55
+ def dataset_add_labels_col(df, col="label", data_folder=None):
56
+ """add a column with unique labels in column col"""
57
+ df[col + "_labels"] = df[col].apply(
58
+ lambda x: list(np.unique(np.load(x if data_folder is None else data_folder / x))))
59
+
60
+
61
+ def dataset_add_mean_col(df, col="data", axis=(0), data_folder=None):
62
+ """adds a column with mean"""
63
+ df[col + "_mean"] = df[col].apply(
64
+ lambda x: np.mean(np.load(x if data_folder is None else data_folder / x), axis=axis))
65
+
66
+
67
+ def dataset_add_median_col(df, col="data", axis=(0), data_folder=None):
68
+ """adds a column with median"""
69
+ df[col + "_median"] = df[col].apply(
70
+ lambda x: np.median(np.load(x if data_folder is None else data_folder / x), axis=axis))
71
+
72
+
73
+ def dataset_add_std_col(df, col="data", axis=(0), data_folder=None):
74
+ """adds a column with mean"""
75
+ df[col + "_std"] = df[col].apply(
76
+ lambda x: np.std(np.load(x if data_folder is None else data_folder / x), axis=axis))
77
+
78
+
79
+ def dataset_add_iqr_col(df, col="data", axis=(0), data_folder=None):
80
+ """adds a column with mean"""
81
+ df[col + "_iqr"] = df[col].apply(lambda x: iqr(np.load(x if data_folder is None else data_folder / x), axis=axis))
82
+
83
+
84
+ def dataset_get_stats(df, col="data", median=False):
85
+ """creates weighted means and stds from mean, std and length cols of the df"""
86
+ mean = np.average(np.stack(df[col + ("_median" if median is True else "_mean")], axis=0), axis=0,
87
+ weights=np.array(df[col + "_length"]))
88
+ std = np.average(np.stack(df[col + ("_iqr" if median is True else "_std")], axis=0), axis=0,
89
+ weights=np.array(df[col + "_length"]))
90
+ return mean, std
91
+
92
+
93
+ def npys_to_memmap(npys, target_filename, delete_npys=False):
94
+ memmap = None
95
+ start = []
96
+ length = []
97
+ files = []
98
+ ids = []
99
+
100
+ for idx, npy in enumerate(npys):
101
+ data = np.load(npy)
102
+ if memmap is None:
103
+ memmap = np.memmap(target_filename, dtype=data.dtype, mode='w+', shape=data.shape)
104
+ start.append(0)
105
+ length.append(data.shape[0])
106
+ else:
107
+ start.append(start[-1] + length[-1])
108
+ length.append(data.shape[0])
109
+ memmap = np.memmap(target_filename, dtype=data.dtype, mode='r+',
110
+ shape=tuple([start[-1] + length[-1]] + [l for l in data.shape[1:]]))
111
+
112
+ ids.append(idx)
113
+ memmap[start[-1]:start[-1] + length[-1]] = data[:]
114
+ memmap.flush()
115
+ if delete_npys is True:
116
+ npy.unlink()
117
+ del memmap
118
+
119
+ np.savez(target_filename.parent / (target_filename.stem + "_meta.npz"), start=start, length=length,
120
+ shape=[start[-1] + length[-1]] + [l for l in data.shape[1:]], dtype=data.dtype)
121
+
122
+
123
+ def reformat_as_memmap(df, target_filename, data_folder=None, annotation=False, delete_npys=False):
124
+ npys_data = []
125
+ npys_label = []
126
+
127
+ for id, row in df.iterrows():
128
+ npys_data.append(data_folder / row["data"] if data_folder is not None else row["data"])
129
+ if annotation:
130
+ npys_label.append(data_folder / row["label"] if data_folder is not None else row["label"])
131
+
132
+ npys_to_memmap(npys_data, target_filename, delete_npys=delete_npys)
133
+ if annotation:
134
+ npys_to_memmap(npys_label, target_filename.parent / (target_filename.stem + "_label.npy"),
135
+ delete_npys=delete_npys)
136
+
137
+ # replace data(filename) by integer
138
+ df_mapped = df.copy()
139
+ df_mapped["data_original"] = df_mapped.data
140
+ df_mapped["data"] = np.arange(len(df_mapped))
141
+ df_mapped.to_pickle(target_filename.parent / ("df_" + target_filename.stem + ".pkl"))
142
+ return df_mapped
143
+
144
+
145
+ # TimeseriesDatasetCrops
146
+
147
+ class TimeseriesDatasetCrops(torch.utils.data.Dataset):
148
+ """timeseries dataset with partial crops."""
149
+
150
+ def __init__(self, df, output_size, chunk_length, min_chunk_length, memmap_filename=None, npy_data=None,
151
+ random_crop=True, data_folder=None, num_classes=2, copies=0, col_lbl="label", stride=None, start_idx=0,
152
+ annotation=False, transforms=None):
153
+ """
154
+ accepts three kinds of input:
155
+ 1) filenames pointing to aligned numpy arrays [timesteps,channels,...] for data and either integer labels or filename pointing to numpy arrays[timesteps,...] e.g. for annotations
156
+ 2) memmap_filename to memmap for data [concatenated,...] and labels- label column in df corresponds to index in this memmap
157
+ 3) npy_data [samples,ts,...] (either path or np.array directly- also supporting variable length input) - label column in df corresponds to sampleid
158
+
159
+ transforms: list of callables (transformations) (applied in the specified order i.e. leftmost element first)
160
+ """
161
+ if transforms is None:
162
+ transforms = []
163
+ assert not ((memmap_filename is not None) and (npy_data is not None))
164
+ # require integer entries if using memmap or npy
165
+ assert (memmap_filename is None and npy_data is None) or df.data.dtype == np.int64
166
+
167
+ self.timeseries_df = df
168
+ self.output_size = output_size
169
+ self.data_folder = data_folder
170
+ self.transforms = transforms
171
+ self.annotation = annotation
172
+ self.col_lbl = col_lbl
173
+
174
+ self.c = num_classes
175
+
176
+ self.mode = "files"
177
+ self.memmap_filename = memmap_filename
178
+ if memmap_filename is not None:
179
+ self.mode = "memmap"
180
+ memmap_meta = np.load(memmap_filename.parent / (memmap_filename.stem + "_meta.npz"))
181
+ self.memmap_start = memmap_meta["start"]
182
+ self.memmap_shape = tuple(memmap_meta["shape"])
183
+ self.memmap_length = memmap_meta["length"]
184
+ self.memmap_dtype = np.dtype(str(memmap_meta["dtype"]))
185
+ self.memmap_file_process_dict = {}
186
+ if annotation:
187
+ memmap_meta_label = np.load(memmap_filename.parent / (memmap_filename.stem + "_label_meta.npz"))
188
+ self.memmap_filename_label = memmap_filename.parent / (memmap_filename.stem + "_label.npy")
189
+ self.memmap_shape_label = tuple(memmap_meta_label["shape"])
190
+ self.memmap_file_process_dict_label = {}
191
+ self.memmap_dtype_label = np.dtype(str(memmap_meta_label["dtype"]))
192
+ elif npy_data is not None:
193
+ self.mode = "npy"
194
+ if isinstance(npy_data, np.ndarray) or isinstance(npy_data, list):
195
+ self.npy_data = np.array(npy_data)
196
+ assert (annotation is False)
197
+ else:
198
+ self.npy_data = np.load(npy_data)
199
+ if annotation:
200
+ self.npy_data_label = np.load(npy_data.parent / (npy_data.stem + "_label.npy"))
201
+
202
+ self.random_crop = random_crop
203
+
204
+ self.df_idx_mapping = []
205
+ self.start_idx_mapping = []
206
+ self.end_idx_mapping = []
207
+
208
+ for df_idx, (id, row) in enumerate(df.iterrows()):
209
+ if self.mode == "files":
210
+ data_length = row["data_length"]
211
+ elif self.mode == "memmap":
212
+ data_length = self.memmap_length[row["data"]]
213
+ else: # npy
214
+ data_length = len(self.npy_data[row["data"]])
215
+
216
+ if chunk_length == 0: # do not split
217
+ idx_start = [start_idx]
218
+ idx_end = [data_length]
219
+ else:
220
+ idx_start = list(range(start_idx, data_length, chunk_length if stride is None else stride))
221
+ idx_end = [min(l + chunk_length, data_length) for l in idx_start]
222
+
223
+ # remove final chunk(s) if too short
224
+ for i in range(len(idx_start)):
225
+ if idx_end[i] - idx_start[i] < min_chunk_length:
226
+ del idx_start[i:]
227
+ del idx_end[i:]
228
+ break
229
+ # append to lists
230
+ for _ in range(copies + 1):
231
+ for i_s, i_e in zip(idx_start, idx_end):
232
+ self.df_idx_mapping.append(df_idx)
233
+ self.start_idx_mapping.append(i_s)
234
+ self.end_idx_mapping.append(i_e)
235
+
236
+ def __len__(self):
237
+ return len(self.df_idx_mapping)
238
+
239
+ def __getitem__(self, idx):
240
+ df_idx = self.df_idx_mapping[idx]
241
+ start_idx = self.start_idx_mapping[idx]
242
+ end_idx = self.end_idx_mapping[idx]
243
+ # determine crop idxs
244
+ timesteps = end_idx - start_idx
245
+ assert (timesteps >= self.output_size)
246
+ if self.random_crop: # random crop
247
+ if timesteps == self.output_size:
248
+ start_idx_crop = start_idx
249
+ else:
250
+ start_idx_crop = start_idx + random.randint(0, timesteps - self.output_size - 1) # np.random.randint(0, timesteps - self.output_size)
251
+ else:
252
+ start_idx_crop = start_idx + (timesteps - self.output_size) // 2
253
+ end_idx_crop = start_idx_crop + self.output_size
254
+
255
+ # print(idx,start_idx,end_idx,start_idx_crop,end_idx_crop)
256
+ # load the actual data
257
+ if self.mode == "files": # from separate files
258
+ data_filename = self.timeseries_df.iloc[df_idx]["data"]
259
+ if self.data_folder is not None:
260
+ data_filename = self.data_folder / data_filename
261
+ data = np.load(data_filename)[
262
+ start_idx_crop:end_idx_crop] # data type has to be adjusted when saving to npy
263
+
264
+ ID = data_filename.stem
265
+
266
+ if self.annotation is True:
267
+ label_filename = self.timeseries_df.iloc[df_idx][self.col_lbl]
268
+ if self.data_folder is not None:
269
+ label_filename = self.data_folder / label_filename
270
+ label = np.load(label_filename)[
271
+ start_idx_crop:end_idx_crop] # data type has to be adjusted when saving to npy
272
+ else:
273
+ label = self.timeseries_df.iloc[df_idx][self.col_lbl] # input type has to be adjusted in the dataframe
274
+ elif self.mode == "memmap": # from one memmap file
275
+ ID = self.timeseries_df.iloc[df_idx]["data_original"].stem
276
+ memmap_idx = self.timeseries_df.iloc[df_idx][
277
+ "data"] # grab the actual index (Note the df to create the ds might be a subset of the original df used to create the memmap)
278
+ idx_offset = self.memmap_start[memmap_idx]
279
+
280
+ pid = os.getpid()
281
+ # print("idx",idx,"ID",ID,"idx_offset",idx_offset,"start_idx_crop",start_idx_crop,"df_idx", self.df_idx_mapping[idx],"pid",pid)
282
+ mem_file = self.memmap_file_process_dict.get(pid, None) # each process owns its handler.
283
+ if mem_file is None:
284
+ # print("memmap_shape", self.memmap_shape)
285
+ mem_file = np.memmap(self.memmap_filename, self.memmap_dtype, mode='r', shape=self.memmap_shape)
286
+ self.memmap_file_process_dict[pid] = mem_file
287
+ data = np.copy(mem_file[idx_offset + start_idx_crop: idx_offset + end_idx_crop])
288
+ # print(mem_file[idx_offset + start_idx_crop: idx_offset + end_idx_crop])
289
+ if self.annotation:
290
+ mem_file_label = self.memmap_file_process_dict_label.get(pid, None) # each process owns its handler.
291
+ if mem_file_label is None:
292
+ mem_file_label = np.memmap(self.memmap_filename_label, self.memmap_dtype, mode='r',
293
+ shape=self.memmap_shape_label)
294
+ self.memmap_file_process_dict_label[pid] = mem_file_label
295
+ label = np.copy(mem_file_label[idx_offset + start_idx_crop: idx_offset + end_idx_crop])
296
+ else:
297
+ label = self.timeseries_df.iloc[df_idx][self.col_lbl]
298
+ else: # single npy array
299
+ ID = self.timeseries_df.iloc[df_idx]["data"]
300
+
301
+ data = self.npy_data[ID][start_idx_crop:end_idx_crop]
302
+
303
+ if self.annotation:
304
+ label = self.npy_data_label[ID][start_idx_crop:end_idx_crop]
305
+ else:
306
+ label = self.timeseries_df.iloc[df_idx][self.col_lbl]
307
+ sample = {'data': data, 'label': label, 'ID': ID}
308
+
309
+ for t in self.transforms:
310
+ sample = t(sample)
311
+
312
+ return sample
313
+
314
+ def get_sampling_weights(self, class_weight_dict, length_weighting=False, group_by_col=None):
315
+ assert (self.annotation is False)
316
+ assert (length_weighting is False or group_by_col is None)
317
+ weights = np.zeros(len(self.df_idx_mapping), dtype=np.float32)
318
+ length_per_class = {}
319
+ length_per_group = {}
320
+ for iw, (i, s, e) in enumerate(zip(self.df_idx_mapping, self.start_idx_mapping, self.end_idx_mapping)):
321
+ label = self.timeseries_df.iloc[i][self.col_lbl]
322
+ weight = class_weight_dict[label]
323
+ if length_weighting:
324
+ if label in length_per_class.keys():
325
+ length_per_class[label] += e - s
326
+ else:
327
+ length_per_class[label] = e - s
328
+ if group_by_col is not None:
329
+ group = self.timeseries_df.iloc[i][group_by_col]
330
+ if group in length_per_group.keys():
331
+ length_per_group[group] += e - s
332
+ else:
333
+ length_per_group[group] = e - s
334
+ weights[iw] = weight
335
+
336
+ if length_weighting: # need second pass to properly take into account the total length per class
337
+ for iw, (i, s, e) in enumerate(zip(self.df_idx_mapping, self.start_idx_mapping, self.end_idx_mapping)):
338
+ label = self.timeseries_df.iloc[i][self.col_lbl]
339
+ weights[iw] = (e - s) / length_per_class[label] * weights[iw]
340
+ if group_by_col is not None:
341
+ for iw, (i, s, e) in enumerate(zip(self.df_idx_mapping, self.start_idx_mapping, self.end_idx_mapping)):
342
+ group = self.timeseries_df.iloc[i][group_by_col]
343
+ weights[iw] = (e - s) / length_per_group[group] * weights[iw]
344
+
345
+ weights = weights / np.min(weights) # normalize smallest weight to 1
346
+ return weights
347
+
348
+ def get_id_mapping(self):
349
+ return self.df_idx_mapping
350
+
351
+
352
+ class RandomCrop(object):
353
+ """
354
+ Crop randomly the image in a sample (deprecated).
355
+ """
356
+
357
+ def __init__(self, output_size, annotation=False):
358
+ self.output_size = output_size
359
+ self.annotation = annotation
360
+
361
+ def __call__(self, sample):
362
+ data, label, ID = sample['data'], sample['label'], sample['ID']
363
+
364
+ timesteps = len(data)
365
+ assert (timesteps >= self.output_size)
366
+ if timesteps == self.output_size:
367
+ start = 0
368
+ else:
369
+ start = random.randint(0, timesteps - self.output_size - 1) # np.random.randint(0, timesteps - self.output_size)
370
+
371
+ data = data[start: start + self.output_size]
372
+ if self.annotation:
373
+ label = label[start: start + self.output_size]
374
+
375
+ return {'data': data, 'label': label, "ID": ID}
376
+
377
+
378
+ class CenterCrop(object):
379
+ """
380
+ Center crop the image in a sample (deprecated).
381
+ """
382
+
383
+ def __init__(self, output_size, annotation=False):
384
+ self.output_size = output_size
385
+ self.annotation = annotation
386
+
387
+ def __call__(self, sample):
388
+ data, label, ID = sample['data'], sample['label'], sample['ID']
389
+
390
+ timesteps = len(data)
391
+
392
+ start = (timesteps - self.output_size) // 2
393
+
394
+ data = data[start: start + self.output_size]
395
+ if self.annotation:
396
+ label = label[start: start + self.output_size]
397
+
398
+ return {'data': data, 'label': label, "ID": ID}
399
+
400
+
401
+ class GaussianNoise(object):
402
+ """
403
+ Add gaussian noise to sample.
404
+ """
405
+
406
+ def __init__(self, scale=0.1):
407
+ self.scale = scale
408
+
409
+ def __call__(self, sample):
410
+ if self.scale == 0:
411
+ return sample
412
+ else:
413
+ data, label, ID = sample['data'], sample['label'], sample['ID']
414
+ data = data + np.reshape(np.array([random.gauss(0, self.scale) for _ in range(np.prod(data.shape))]),
415
+ data.shape) # np.random.normal(scale=self.scale,size=data.shape).astype(np.float32)
416
+ return {'data': data, 'label': label, "ID": ID}
417
+
418
+
419
+ class Rescale(object):
420
+ """Rescale by factor.
421
+ """
422
+
423
+ def __init__(self, scale=0.5, interpolation_order=3):
424
+ self.scale = scale
425
+ self.interpolation_order = interpolation_order
426
+
427
+ def __call__(self, sample):
428
+ if self.scale == 1:
429
+ return sample
430
+ else:
431
+ data, label, ID = sample['data'], sample['label'], sample['ID']
432
+ timesteps_new = int(self.scale * len(data))
433
+ data = transform.resize(data, (timesteps_new, data.shape[1]), order=self.interpolation_order).astype(
434
+ np.float32)
435
+ return {'data': data, 'label': label, "ID": ID}
436
+
437
+
438
+ class ToTensor(object):
439
+ """Convert ndarrays in sample to Tensors."""
440
+
441
+ def __init__(self, transpose_data1d=True):
442
+ self.transpose_data1d = transpose_data1d
443
+
444
+ def __call__(self, sample):
445
+ def _to_tensor(data, transpose_data1d=False):
446
+ if (
447
+ len(data.shape) == 2 and transpose_data1d is True): # swap channel and time axis for direct application of pytorch's 1d convs
448
+ data = data.transpose((1, 0))
449
+ if isinstance(data, np.ndarray):
450
+ return torch.from_numpy(data)
451
+ else: # default_collate will take care of it
452
+ return data
453
+
454
+ data, label, ID = sample['data'], sample['label'], sample['ID']
455
+
456
+ if not isinstance(data, tuple):
457
+ data = _to_tensor(data, self.transpose_data1d)
458
+ else:
459
+ data = tuple(_to_tensor(x, self.transpose_data1d) for x in data)
460
+
461
+ if not isinstance(label, tuple):
462
+ label = _to_tensor(label)
463
+ else:
464
+ label = tuple(_to_tensor(x) for x in label)
465
+
466
+ return data, label # returning as a tuple (potentially of lists)
467
+
468
+
469
+ class Normalize(object):
470
+ """
471
+ Normalize using given stats.
472
+ """
473
+
474
+ def __init__(self, stats_mean, stats_std, input=True, channels=None):
475
+ if channels is None:
476
+ channels = []
477
+ self.stats_mean = np.expand_dims(stats_mean.astype(np.float32), axis=0) if stats_mean is not None else None
478
+ self.stats_std = np.expand_dims(stats_std.astype(np.float32), axis=0) + 1e-8 if stats_std is not None else None
479
+ self.input = input
480
+ if len(channels) > 0:
481
+ for i in range(len(stats_mean)):
482
+ if not (i in channels):
483
+ self.stats_mean[:, i] = 0
484
+ self.stats_std[:, i] = 1
485
+
486
+ def __call__(self, sample):
487
+ if self.input:
488
+ data = sample['data']
489
+ else:
490
+ data = sample['label']
491
+
492
+ if self.stats_mean is not None:
493
+ data = data - self.stats_mean
494
+ if self.stats_std is not None:
495
+ data = data / self.stats_std
496
+
497
+ if self.input:
498
+ return {'data': data, 'label': sample['label'], "ID": sample['ID']}
499
+ else:
500
+ return {'data': sample['data'], 'label': data, "ID": sample['ID']}
501
+
502
+
503
+ class ButterFilter(object):
504
+ """
505
+ Normalize using given stats.
506
+ """
507
+
508
+ def __init__(self, lowcut=50, highcut=50, fs=100, order=5, btype='band', forwardbackward=True, input=True):
509
+ self.filter = butter_filter(lowcut, highcut, fs, order, btype)
510
+ self.input = input
511
+ self.forwardbackward = forwardbackward
512
+
513
+ def __call__(self, sample):
514
+ if self.input:
515
+ data = sample['data']
516
+ else:
517
+ data = sample['label']
518
+
519
+ # check multiple axis
520
+ if self.forwardbackward:
521
+ data = sosfiltfilt(self.filter, data, axis=0)
522
+ else:
523
+ data = sosfilt(self.filter, data, axis=0)
524
+
525
+ if self.input:
526
+ return {'data': data, 'label': sample['label'], "ID": sample['ID']}
527
+ else:
528
+ return {'data': sample['data'], 'label': data, "ID": sample['ID']}
529
+
530
+
531
+ class ChannelFilter(object):
532
+ """
533
+ Select certain channels.
534
+ """
535
+
536
+ def __init__(self, channels=None, input=True):
537
+ if channels is None:
538
+ channels = [0]
539
+ self.channels = channels
540
+ self.input = input
541
+
542
+ def __call__(self, sample):
543
+ if self.input:
544
+ return {'data': sample['data'][:, self.channels], 'label': sample['label'], "ID": sample['ID']}
545
+ else:
546
+ return {'data': sample['data'], 'label': sample['label'][:, self.channels], "ID": sample['ID']}
547
+
548
+
549
+ class Transform(object):
550
+ """
551
+ Transforms data using a given function i.e. data_new = func(data) for input is True else label_new = func(label)
552
+ """
553
+
554
+ def __init__(self, func, input=False):
555
+ self.func = func
556
+ self.input = input
557
+
558
+ def __call__(self, sample):
559
+ if self.input:
560
+ return {'data': self.func(sample['data']), 'label': sample['label'], "ID": sample['ID']}
561
+ else:
562
+ return {'data': sample['data'], 'label': self.func(sample['label']), "ID": sample['ID']}
563
+
564
+
565
+ class TupleTransform(object):
566
+ """
567
+ Transforms data using a given function (operating on both data and label and return a tuple) i.e. data_new, label_new = func(data_old, label_old)
568
+ """
569
+
570
+ def __init__(self, func, input=False):
571
+ self.func = func
572
+
573
+ def __call__(self, sample):
574
+ data_new, label_new = self.func(sample['data'], sample['label'])
575
+ return {'data': data_new, 'label': label_new, "ID": sample['ID']}
576
+
577
+
578
+ # MIL and ensemble models
579
+
580
+ def aggregate_predictions(preds, targs=None, idmap=None, aggregate_fn=np.mean, verbose=True):
581
+ """
582
+ aggregates potentially multiple predictions per sample (can also pass targs for convenience)
583
+ idmap: idmap as returned by TimeSeriesCropsDataset's get_id_mapping
584
+ preds: ordered predictions as returned by learn.get_preds()
585
+ aggregate_fn: function that is used to aggregate multiple predictions per sample (most commonly np.amax or np.mean)
586
+ """
587
+ if idmap is not None and len(idmap) != len(np.unique(idmap)):
588
+ if verbose:
589
+ print("aggregating predictions...")
590
+ preds_aggregated = []
591
+ targs_aggregated = []
592
+ for i in np.unique(idmap):
593
+ preds_local = preds[np.where(idmap == i)[0]]
594
+ preds_aggregated.append(aggregate_fn(preds_local, axis=0))
595
+ if targs is not None:
596
+ targs_local = targs[np.where(idmap == i)[0]]
597
+ assert (np.all(targs_local == targs_local[0])) # all labels have to agree
598
+ targs_aggregated.append(targs_local[0])
599
+ if targs is None:
600
+ return np.array(preds_aggregated)
601
+ else:
602
+ return np.array(preds_aggregated), np.array(targs_aggregated)
603
+ else:
604
+ if targs is None:
605
+ return preds
606
+ else:
607
+ return preds, targs
608
+
609
+
610
+ class milwrapper(nn.Module):
611
+ def __init__(self, model, input_size, n, stride=None, softmax=True):
612
+ super().__init__()
613
+ self.n = n
614
+ self.input_size = input_size
615
+ self.model = model
616
+ self.softmax = softmax
617
+ self.stride = input_size if stride is None else stride
618
+
619
+ def forward(self, x):
620
+ # bs,ch,seq
621
+ for i in range(self.n):
622
+ pred_single = self.model(x[:, :, i * self.stride:i * self.stride + self.input_size])
623
+ pred_single = nn.functional.softmax(pred_single, dim=1)
624
+ if i == 0:
625
+ pred = pred_single
626
+ else:
627
+ pred += pred_single
628
+ return pred / self.n
629
+
630
+
631
+ class ensemblewrapper(nn.Module):
632
+ def __init__(self, model, checkpts):
633
+ super().__init__()
634
+ self.model = model
635
+ self.checkpts = checkpts
636
+
637
+ def forward(self, x):
638
+ # bs,ch,seq
639
+ for i, c in enumerate(self.checkpts):
640
+ state = torch.load(Path("./models/") / f'{c}.pth', map_location=x.device)
641
+ self.model.load_state_dict(state['model'], strict=True)
642
+
643
+ pred_single = self.model(x)
644
+ pred_single = nn.functional.softmax(pred_single, dim=1)
645
+ if (i == 0):
646
+ pred = pred_single
647
+ else:
648
+ pred += pred_single
649
+ return pred / len(self.checkpts)
utilities/utils.py ADDED
@@ -0,0 +1,509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import pickle
4
+ import pandas as pd
5
+ import numpy as np
6
+ from tqdm import tqdm
7
+ import wfdb
8
+ import ast
9
+ from sklearn.metrics import roc_auc_score, roc_curve
10
+ from sklearn.preprocessing import StandardScaler, MultiLabelBinarizer
11
+
12
+
13
+ # EVALUATION STUFF
14
+ def generate_results(idxs, y_true, y_pred, thresholds):
15
+ return evaluate_experiment(y_true[idxs], y_pred[idxs], thresholds)
16
+
17
+
18
+ def evaluate_experiment(y_true, y_pred, thresholds=None):
19
+ results = {}
20
+
21
+ if not thresholds is None:
22
+ # binary predictions
23
+ y_pred_binary = apply_thresholds(y_pred, thresholds)
24
+ # PhysioNet/CinC Challenges metrics
25
+ challenge_scores = challenge_metrics(y_true, y_pred_binary, beta1=2, beta2=2)
26
+ results['F_beta_macro'] = challenge_scores['F_beta_macro']
27
+ results['G_beta_macro'] = challenge_scores['G_beta_macro']
28
+ results['TP'] = challenge_scores['TP']
29
+ results['TN'] = challenge_scores['TN']
30
+ results['FP'] = challenge_scores['FP']
31
+ results['FN'] = challenge_scores['FN']
32
+ results['Accuracy'] = challenge_scores['Accuracy']
33
+ results['F1'] = challenge_scores['F1']
34
+ results['Precision'] = challenge_scores['Precision']
35
+ results['Recall'] = challenge_scores['Recall']
36
+
37
+ # label based metric
38
+ results['macro_auc'] = roc_auc_score(y_true, y_pred, average='macro')
39
+
40
+ df_result = pd.DataFrame(results, index=[0])
41
+ return df_result
42
+
43
+
44
+ def challenge_metrics(y_true, y_pred, beta1=2, beta2=2, single=False):
45
+ f_beta = 0
46
+ g_beta = 0
47
+ TP, FP, TN, FN = 0., 0., 0., 0.
48
+ Accuracy = 0
49
+ Precision = 0
50
+ Recall = 0
51
+ F1 = 0
52
+
53
+ if single: # if evaluating single class in case of threshold-optimization
54
+ sample_weights = np.ones(y_true.sum(axis=1).shape)
55
+ else:
56
+ sample_weights = y_true.sum(axis=1)
57
+ for classi in range(y_true.shape[1]):
58
+ y_truei, y_predi = y_true[:, classi], y_pred[:, classi]
59
+ TP, FP, TN, FN = 0., 0., 0., 0.
60
+ for i in range(len(y_predi)):
61
+ sample_weight = sample_weights[i]
62
+ if y_truei[i] == y_predi[i] == 1:
63
+ TP += 1. / sample_weight
64
+ if (y_predi[i] == 1) and (y_truei[i] != y_predi[i]):
65
+ FP += 1. / sample_weight
66
+ if y_truei[i] == y_predi[i] == 0:
67
+ TN += 1. / sample_weight
68
+ if (y_predi[i] == 0) and (y_truei[i] != y_predi[i]):
69
+ FN += 1. / sample_weight
70
+ f_beta_i = ((1 + beta1 ** 2) * TP) / ((1 + beta1 ** 2) * TP + FP + (beta1 ** 2) * FN)
71
+ g_beta_i = TP / (TP + FP + beta2 * FN)
72
+
73
+ f_beta += f_beta_i
74
+ g_beta += g_beta_i
75
+
76
+ Accuracy = (TP + TN) / (FP + TP + TN + FN)
77
+ # Precision = TP / (TP + FP)
78
+ # Recall = TP / (TP + FN)
79
+ # F1 = 2*(Precision * Recall) / (Precision + Recall)
80
+ F1 = 2 * TP / 2 * TP + FP + FN
81
+
82
+ return {'F_beta_macro': f_beta / y_true.shape[1], 'G_beta_macro': g_beta / y_true.shape[1], 'TP': TP, 'FP': FP,
83
+ 'TN': TN, 'FN': FN, 'Accuracy': Accuracy, 'F1': F1, 'Precision': Precision, 'Recall': Recall}
84
+
85
+
86
+ def get_appropriate_bootstrap_samples(y_true, n_bootstraping_samples):
87
+ samples = []
88
+ while True:
89
+ ridxs = np.random.randint(0, len(y_true), len(y_true))
90
+ if y_true[ridxs].sum(axis=0).min() != 0:
91
+ samples.append(ridxs)
92
+ if len(samples) == n_bootstraping_samples:
93
+ break
94
+ return samples
95
+
96
+
97
+ def find_optimal_cutoff_threshold(target, predicted):
98
+ """
99
+ Find the optimal probability cutoff point for a classification model related to event rate
100
+ """
101
+ fpr, tpr, threshold = roc_curve(target, predicted)
102
+ optimal_idx = np.argmax(tpr - fpr)
103
+ optimal_threshold = threshold[optimal_idx]
104
+ return optimal_threshold
105
+
106
+
107
+ def find_optimal_cutoff_thresholds(y_true, y_pred):
108
+ return [find_optimal_cutoff_threshold(y_true[:, i], y_pred[:, i]) for i in range(y_true.shape[1])]
109
+
110
+
111
+ def find_optimal_cutoff_threshold_for_Gbeta(target, predicted, n_thresholds=100):
112
+ thresholds = np.linspace(0.00, 1, n_thresholds)
113
+ scores = [challenge_metrics(target, predicted > t, single=True)['G_beta_macro'] for t in thresholds]
114
+ optimal_idx = np.argmax(scores)
115
+ return thresholds[optimal_idx]
116
+
117
+
118
+ def find_optimal_cutoff_thresholds_for_Gbeta(y_true, y_pred):
119
+ print("optimize thresholds with respect to G_beta")
120
+ return [
121
+ find_optimal_cutoff_threshold_for_Gbeta(y_true[:, k][:, np.newaxis], y_pred[:, k][:, np.newaxis])
122
+ for k in tqdm(range(y_true.shape[1]))]
123
+
124
+
125
+ def apply_thresholds(preds, thresholds):
126
+ """
127
+ apply class-wise thresholds to prediction score in order to get binary format.
128
+ BUT: if no score is above threshold, pick maximum. This is needed due to metric issues.
129
+ """
130
+ tmp = []
131
+ for p in preds:
132
+ tmp_p = (p > thresholds).astype(int)
133
+ if np.sum(tmp_p) == 0:
134
+ tmp_p[np.argmax(p)] = 1
135
+ tmp.append(tmp_p)
136
+ tmp = np.array(tmp)
137
+ return tmp
138
+
139
+
140
+ # DATA PROCESSING STUFF
141
+ def load_dataset(path, sampling_rate, release=False):
142
+ if path.split('/')[-2] == 'ptbxl':
143
+ # load and convert annotation data
144
+ Y = pd.read_csv(path + 'ptbxl_database.csv', index_col='ecg_id')
145
+ Y.scp_codes = Y.scp_codes.apply(lambda x: ast.literal_eval(x))
146
+
147
+ # Load raw signal data
148
+ X = load_raw_data_ptbxl(Y, sampling_rate, path)
149
+
150
+ elif path.split('/')[-2] == 'ICBEB':
151
+ # load and convert annotation data
152
+ Y = pd.read_csv(path + 'icbeb_database.csv', index_col='ecg_id')
153
+ Y.scp_codes = Y.scp_codes.apply(lambda x: ast.literal_eval(x))
154
+
155
+ # Load raw signal data
156
+ X = load_raw_data_icbeb(Y, sampling_rate, path)
157
+
158
+ return X, Y
159
+
160
+
161
+ def load_raw_data_icbeb(df, sampling_rate, path):
162
+ if sampling_rate == 100:
163
+ if os.path.exists(path + 'raw100.npy'):
164
+ data = np.load(path + 'raw100.npy', allow_pickle=True)
165
+ else:
166
+ data = [wfdb.rdsamp(path + 'records100/' + str(f)) for f in tqdm(df.index)]
167
+ data = np.array([signal for signal, meta in data])
168
+ pickle.dump(data, open(path + 'raw100.npy', 'wb'), protocol=4)
169
+ elif sampling_rate == 500:
170
+ if os.path.exists(path + 'raw500.npy'):
171
+ data = np.load(path + 'raw500.npy', allow_pickle=True)
172
+ else:
173
+ data = [wfdb.rdsamp(path + 'records500/' + str(f)) for f in tqdm(df.index)]
174
+ data = np.array([signal for signal, meta in data])
175
+ pickle.dump(data, open(path + 'raw500.npy', 'wb'), protocol=4)
176
+ return data
177
+
178
+
179
+ def load_raw_data_ptbxl(df, sampling_rate, path):
180
+ if sampling_rate == 100:
181
+ if os.path.exists(path + 'raw100.npy'):
182
+ data = np.load(path + 'raw100.npy', allow_pickle=True)
183
+ else:
184
+ data = [wfdb.rdsamp(path + f) for f in tqdm(df.filename_lr)]
185
+ data = np.array([signal for signal, meta in data])
186
+ pickle.dump(data, open(path + 'raw100.npy', 'wb'), protocol=4)
187
+ elif sampling_rate == 500:
188
+ if os.path.exists(path + 'raw500.npy'):
189
+ data = np.load(path + 'raw500.npy', allow_pickle=True)
190
+ else:
191
+ data = [wfdb.rdsamp(path + f) for f in tqdm(df.filename_hr)]
192
+ data = np.array([signal for signal, meta in data])
193
+ pickle.dump(data, open(path + 'raw500.npy', 'wb'), protocol=4)
194
+ return data
195
+
196
+
197
+ def compute_label_aggregations(df, folder, ctype):
198
+ df['scp_codes_len'] = df.scp_codes.apply(lambda x: len(x))
199
+
200
+ aggregation_df = pd.read_csv(folder + 'scp_statements.csv', index_col=0)
201
+
202
+ if ctype in ['diagnostic', 'subdiagnostic', 'superdiagnostic']:
203
+
204
+ def aggregate_all_diagnostic(y_dic):
205
+ tmp = []
206
+ for key in y_dic.keys():
207
+ if key in diag_agg_df.index:
208
+ tmp.append(key)
209
+ return list(set(tmp))
210
+
211
+ def aggregate_subdiagnostic(y_dic):
212
+ tmp = []
213
+ for key in y_dic.keys():
214
+ if key in diag_agg_df.index:
215
+ c = diag_agg_df.loc[key].diagnostic_subclass
216
+ if str(c) != 'nan':
217
+ tmp.append(c)
218
+ return list(set(tmp))
219
+
220
+ def aggregate_diagnostic(y_dic):
221
+ tmp = []
222
+ for key in y_dic.keys():
223
+ if key in diag_agg_df.index:
224
+ c = diag_agg_df.loc[key].diagnostic_class
225
+ if str(c) != 'nan':
226
+ tmp.append(c)
227
+ return list(set(tmp))
228
+
229
+ diag_agg_df = aggregation_df[aggregation_df.diagnostic == 1.0]
230
+ if ctype == 'diagnostic':
231
+ df['diagnostic'] = df.scp_codes.apply(aggregate_all_diagnostic)
232
+ df['diagnostic_len'] = df.diagnostic.apply(lambda x: len(x))
233
+ elif ctype == 'subdiagnostic':
234
+ df['subdiagnostic'] = df.scp_codes.apply(aggregate_subdiagnostic)
235
+ df['subdiagnostic_len'] = df.subdiagnostic.apply(lambda x: len(x))
236
+ elif ctype == 'superdiagnostic':
237
+ df['superdiagnostic'] = df.scp_codes.apply(aggregate_diagnostic)
238
+ df['superdiagnostic_len'] = df.superdiagnostic.apply(lambda x: len(x))
239
+ elif ctype == 'form':
240
+ form_agg_df = aggregation_df[aggregation_df.form == 1.0]
241
+
242
+ def aggregate_form(y_dic):
243
+ tmp = []
244
+ for key in y_dic.keys():
245
+ if key in form_agg_df.index:
246
+ c = key
247
+ if str(c) != 'nan':
248
+ tmp.append(c)
249
+ return list(set(tmp))
250
+
251
+ df['form'] = df.scp_codes.apply(aggregate_form)
252
+ df['form_len'] = df.form.apply(lambda x: len(x))
253
+ elif ctype == 'rhythm':
254
+ rhythm_agg_df = aggregation_df[aggregation_df.rhythm == 1.0]
255
+
256
+ def aggregate_rhythm(y_dic):
257
+ tmp = []
258
+ for key in y_dic.keys():
259
+ if key in rhythm_agg_df.index:
260
+ c = key
261
+ if str(c) != 'nan':
262
+ tmp.append(c)
263
+ return list(set(tmp))
264
+
265
+ df['rhythm'] = df.scp_codes.apply(aggregate_rhythm)
266
+ df['rhythm_len'] = df.rhythm.apply(lambda x: len(x))
267
+ elif ctype == 'all':
268
+ df['all_scp'] = df.scp_codes.apply(lambda x: list(set(x.keys())))
269
+
270
+ return df
271
+
272
+
273
+ def select_data(XX, YY, ctype, min_samples, output_folder):
274
+ # convert multi_label to multi-hot
275
+ mlb = MultiLabelBinarizer()
276
+
277
+ if ctype == 'diagnostic':
278
+ X = XX[YY.diagnostic_len > 0]
279
+ Y = YY[YY.diagnostic_len > 0]
280
+ mlb.fit(Y.diagnostic.values)
281
+ y = mlb.transform(Y.diagnostic.values)
282
+ elif ctype == 'subdiagnostic':
283
+ counts = pd.Series(np.concatenate(YY.subdiagnostic.values)).value_counts()
284
+ counts = counts[counts > min_samples]
285
+ YY.subdiagnostic = YY.subdiagnostic.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
286
+ YY['subdiagnostic_len'] = YY.subdiagnostic.apply(lambda x: len(x))
287
+ X = XX[YY.subdiagnostic_len > 0]
288
+ Y = YY[YY.subdiagnostic_len > 0]
289
+ mlb.fit(Y.subdiagnostic.values)
290
+ y = mlb.transform(Y.subdiagnostic.values)
291
+ elif ctype == 'superdiagnostic':
292
+ counts = pd.Series(np.concatenate(YY.superdiagnostic.values)).value_counts()
293
+ counts = counts[counts > min_samples]
294
+ YY.superdiagnostic = YY.superdiagnostic.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
295
+ YY['superdiagnostic_len'] = YY.superdiagnostic.apply(lambda x: len(x))
296
+ X = XX[YY.superdiagnostic_len > 0]
297
+ Y = YY[YY.superdiagnostic_len > 0]
298
+ mlb.fit(Y.superdiagnostic.values)
299
+ y = mlb.transform(Y.superdiagnostic.values)
300
+ elif ctype == 'form':
301
+ # filter
302
+ counts = pd.Series(np.concatenate(YY.form.values)).value_counts()
303
+ counts = counts[counts > min_samples]
304
+ YY.form = YY.form.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
305
+ YY['form_len'] = YY.form.apply(lambda x: len(x))
306
+ # select
307
+ X = XX[YY.form_len > 0]
308
+ Y = YY[YY.form_len > 0]
309
+ mlb.fit(Y.form.values)
310
+ y = mlb.transform(Y.form.values)
311
+ elif ctype == 'rhythm':
312
+ # filter
313
+ counts = pd.Series(np.concatenate(YY.rhythm.values)).value_counts()
314
+ counts = counts[counts > min_samples]
315
+ YY.rhythm = YY.rhythm.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
316
+ YY['rhythm_len'] = YY.rhythm.apply(lambda x: len(x))
317
+ # select
318
+ X = XX[YY.rhythm_len > 0]
319
+ Y = YY[YY.rhythm_len > 0]
320
+ mlb.fit(Y.rhythm.values)
321
+ y = mlb.transform(Y.rhythm.values)
322
+ elif ctype == 'all':
323
+ # filter
324
+ counts = pd.Series(np.concatenate(YY.all_scp.values)).value_counts()
325
+ counts = counts[counts > min_samples]
326
+ YY.all_scp = YY.all_scp.apply(lambda x: list(set(x).intersection(set(counts.index.values))))
327
+ YY['all_scp_len'] = YY.all_scp.apply(lambda x: len(x))
328
+ # select
329
+ X = XX[YY.all_scp_len > 0]
330
+ Y = YY[YY.all_scp_len > 0]
331
+ mlb.fit(Y.all_scp.values)
332
+ y = mlb.transform(Y.all_scp.values)
333
+ else:
334
+ pass
335
+
336
+ # save Label_Binarizer
337
+ with open(output_folder + 'mlb.pkl', 'wb') as tokenizer:
338
+ pickle.dump(mlb, tokenizer)
339
+
340
+ return X, Y, y, mlb
341
+
342
+
343
+ def preprocess_signals(X_train, X_validation, X_test, outputfolder):
344
+ # Standardize data such that mean 0 and variance 1
345
+ ss = StandardScaler()
346
+ ss.fit(np.vstack(X_train).flatten()[:, np.newaxis].astype(float))
347
+
348
+ # Save Standardize data
349
+ with open(outputfolder + 'standard_scaler.pkl', 'wb') as ss_file:
350
+ pickle.dump(ss, ss_file)
351
+
352
+ return apply_standardizer(X_train, ss), apply_standardizer(X_validation,
353
+ ss), apply_standardizer(
354
+ X_test, ss)
355
+
356
+
357
+ def apply_standardizer(X, ss):
358
+ X_tmp = []
359
+ for x in X:
360
+ x_shape = x.shape
361
+ X_tmp.append(ss.transform(x.flatten()[:, np.newaxis]).reshape(x_shape))
362
+ X_tmp = np.array(X_tmp)
363
+ return X_tmp
364
+
365
+
366
+ # DOCUMENTATION STUFF
367
+
368
+ def generate_ptbxl_summary_table(selection=None, folder='/output/'):
369
+ exps = ['exp0', 'exp1', 'exp1.1', 'exp1.1.1', 'exp2', 'exp3']
370
+ metrics = ['macro_auc', 'Accuracy', 'TP', 'TN', 'FP', 'FN', 'Precision', 'Recall', 'F1']
371
+ # 0 1 2 3 4 5 6 7 8
372
+
373
+ # get models
374
+ models = {}
375
+ for i, exp in enumerate(exps):
376
+ if selection is None:
377
+ exp_models = [m.split('/')[-1] for m in glob.glob(folder + str(exp) + '/models/*')]
378
+ else:
379
+ exp_models = selection
380
+ if i == 0:
381
+ models = set(exp_models)
382
+ else:
383
+ models = models.union(set(exp_models))
384
+
385
+ results_dic = {'Method': [],
386
+ 'exp0_macro_auc': [],
387
+ 'exp1_macro_auc': [],
388
+ 'exp1.1_macro_auc': [],
389
+ 'exp1.1.1_macro_auc': [],
390
+ 'exp2_macro_auc': [],
391
+ 'exp3_macro_auc': [],
392
+ 'exp0_Accuracy': [],
393
+ 'exp1_Accuracy': [],
394
+ 'exp1.1_Accuracy': [],
395
+ 'exp1.1.1_Accuracy': [],
396
+ 'exp2_Accuracy': [],
397
+ 'exp3_Accuracy': [],
398
+ 'exp0_F1': [],
399
+ 'exp1_F1': [],
400
+ 'exp1.1_F1': [],
401
+ 'exp1.1.1_F1': [],
402
+ 'exp2_F1': [],
403
+ 'exp3_F1': [],
404
+ 'exp0_Precision': [],
405
+ 'exp1_Precision': [],
406
+ 'exp1.1_Precision': [],
407
+ 'exp1.1.1_Precision': [],
408
+ 'exp2_Precision': [],
409
+ 'exp3_Precision': [],
410
+ 'exp0_Recall': [],
411
+ 'exp1_Recall': [],
412
+ 'exp1.1_Recall': [],
413
+ 'exp1.1.1_Recall': [],
414
+ 'exp2_Recall': [],
415
+ 'exp3_Recall': [],
416
+ 'exp0_TP': [],
417
+ 'exp1_TP': [],
418
+ 'exp1.1_TP': [],
419
+ 'exp1.1.1_TP': [],
420
+ 'exp2_TP': [],
421
+ 'exp3_TP': [],
422
+ 'exp0_TN': [],
423
+ 'exp1_TN': [],
424
+ 'exp1.1_TN': [],
425
+ 'exp1.1.1_TN': [],
426
+ 'exp2_TN': [],
427
+ 'exp3_TN': [],
428
+ 'exp0_FP': [],
429
+ 'exp1_FP': [],
430
+ 'exp1.1_FP': [],
431
+ 'exp1.1.1_FP': [],
432
+ 'exp2_FP': [],
433
+ 'exp3_FP': [],
434
+ 'exp0_FN': [],
435
+ 'exp1_FN': [],
436
+ 'exp1.1_FN': [],
437
+ 'exp1.1.1_FN': [],
438
+ 'exp2_FN': [],
439
+ 'exp3_FN': []
440
+ }
441
+
442
+ for m in models:
443
+ results_dic['Method'].append(m)
444
+
445
+ for e in exps:
446
+
447
+ try:
448
+ me_res = pd.read_csv(folder + str(e) + '/models/' + str(m) + '/results/te_results.csv', index_col=0)
449
+
450
+ mean1 = me_res.loc['point'][metrics[0]]
451
+ unc1 = max(me_res.loc['upper'][metrics[0]] - me_res.loc['point'][metrics[0]],
452
+ me_res.loc['point'][metrics[0]] - me_res.loc['lower'][metrics[0]])
453
+
454
+ acc = me_res.loc['point'][metrics[1]]
455
+ f1 = me_res.loc['point'][metrics[8]]
456
+ precision = me_res.loc['point'][metrics[6]]
457
+ recall = me_res.loc['point'][metrics[7]]
458
+ tp = me_res.loc['point'][metrics[2]]
459
+ tn = me_res.loc['point'][metrics[3]]
460
+ fp = me_res.loc['point'][metrics[4]]
461
+ fn = me_res.loc['point'][metrics[5]]
462
+
463
+ results_dic[e + '_macro_auc'].append("%.3f(%.2d)" % (np.round(mean1, 3), int(unc1 * 1000)))
464
+ results_dic[e + '_Accuracy'].append("%.3f" % acc)
465
+ results_dic[e + '_F1'].append("%.3f" % f1)
466
+ results_dic[e + '_Precision'].append("%.3f" % precision)
467
+ results_dic[e + '_Recall'].append("%.3f" % recall)
468
+ results_dic[e + '_TP'].append("%.3f" % tp)
469
+ results_dic[e + '_TN'].append("%.3f" % tn)
470
+ results_dic[e + '_FP'].append("%.3f" % fp)
471
+ results_dic[e + '_FN'].append("%.3f" % fn)
472
+
473
+ except FileNotFoundError:
474
+ results_dic[e + '_macro_auc'].append("--")
475
+ results_dic[e + '_Accuracy'].append("--")
476
+ results_dic[e + '_F1'].append("--")
477
+ results_dic[e + '_Precision'].append("--")
478
+ results_dic[e + '_Recall'].append("--")
479
+ results_dic[e + '_TP'].append("--")
480
+ results_dic[e + '_TN'].append("--")
481
+ results_dic[e + '_FP'].append("--")
482
+ results_dic[e + '_FN'].append("--")
483
+
484
+ df = pd.DataFrame(results_dic)
485
+ df_index = df[df.Method.isin(['naive', 'ensemble'])]
486
+ df_rest = df[~df.Method.isin(['naive', 'ensemble'])]
487
+ df = pd.concat([df_rest, df_index])
488
+ df.to_csv(folder + 'results_ptbxl.csv')
489
+
490
+ titles = [
491
+ '### 1. PTB-XL: all statements',
492
+ '### 2. PTB-XL: diagnostic statements',
493
+ '### 3. PTB-XL: Diagnostic subclasses',
494
+ '### 4. PTB-XL: Diagnostic superclasses',
495
+ '### 5. PTB-XL: Form statements',
496
+ '### 6. PTB-XL: Rhythm statements'
497
+ ]
498
+
499
+ # helper output function for markdown tables
500
+ our_work = 'https://arxiv.org/abs/2004.13701'
501
+ our_repo = 'https://github.com/helme/ecg_ptbxl_benchmarking/'
502
+ md_source = ''
503
+ for i, e in enumerate(exps):
504
+ md_source += '\n ' + titles[i] + ' \n \n'
505
+ md_source += '| Model | AUC |\n'
506
+
507
+ for row in df_rest[['Method', e + '_AUC']].sort_values(e + '_AUC', ascending=False).values:
508
+ md_source += '| ' + row[0].replace('fastai_', '') + ' | ' + row[1] + ' |\n'
509
+ print(md_source)