Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade

Update requirements and refactor model submission logic to improve error handling and data loading
b3de191
import gradio as gr | |
import pandas as pd | |
import json | |
import os | |
from pathlib import Path | |
from huggingface_hub import HfApi | |
from datasets import load_dataset | |
api = HfApi() | |
OWNER = "Navid-AI" | |
DATASET_REPO_ID = f"{OWNER}/requests-dataset" | |
results_dir = Path(__file__).parent / "results" | |
# Replace the current HF_TOKEN line with this to add a helpful error message if token is missing | |
HF_TOKEN = os.environ.get('HF_TOKEN') | |
if not HF_TOKEN: | |
print("Warning: HF_TOKEN environment variable not set. API operations requiring authentication will fail.") | |
HF_TOKEN = None | |
# Add a helper to load JSON results with optional formatting. | |
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None): | |
if file_path.exists(): | |
df = pd.read_json(file_path) | |
else: | |
raise FileNotFoundError(f"File '{file_path}' not found.") | |
if prepare_for_display: | |
# Apply common mapping for model link formatting. | |
df[["Model"]] = df[["Model"]].map(lambda x: f'<a href="https://huggingface.co/{x}" target="_blank">{x}</a>') | |
if drop_cols is not None: | |
df.drop(columns=drop_cols, inplace=True) | |
if sort_col is not None: | |
df.sort_values(sort_col, ascending=False, inplace=True) | |
return df | |
def get_model_info(model_id, verbose=False): | |
try: | |
model_info = api.model_info(model_id) | |
num_downloads = model_info.downloads | |
num_likes = model_info.likes | |
license = model_info.card_data["license"] | |
num_parameters = round(model_info.safetensors.total / 1e6) | |
supported_precisions = list(model_info.safetensors.parameters.keys()) | |
if verbose: | |
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.") | |
print(f"The model has approximately {num_parameters:.2f} billion parameters.") | |
print(f"The model supports the following precisions: {supported_precisions}") | |
return num_downloads, num_likes, license, num_parameters, supported_precisions | |
except Exception as e: | |
print(f"Error: Could not fetch model information. {str(e)}") | |
return 0, 0, "Unknown", 0, ["Missing"] | |
def fetch_model_information(model_name): | |
try: | |
num_downloads, num_likes, license, num_parameters, supported_precisions = get_model_info(model_name) | |
if len(supported_precisions) == 0: | |
supported_precisions = [None] | |
except Exception as e: | |
gr.Error(f"Error: Could not fetch model information. {str(e)}") | |
return | |
return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes | |
def load_requests(status_folder, task_type=None): | |
# Load the dataset from the HuggingFace Hub | |
ds = load_dataset(DATASET_REPO_ID, split="test") | |
df = ds.to_pandas() | |
# Filter the dataframe based on the status folder and task type | |
df = df[df['status'] == status_folder.upper()] | |
df = df[df['task'] == task_type] if task_type else df | |
df.drop(columns=['status', 'task'], inplace=True) | |
return df | |
def submit_model(model_name, revision, precision, params, license, task): | |
# Load pending and finished requests from the dataset repository | |
df_pending = load_requests('pending', task_type=task) | |
df_finished = load_requests('finished', task_type=task) | |
df_failed = load_requests('failed', task_type=task) | |
# Check if Auto Fetch feature couldn't fetch model info | |
if float(params) == 0 and precision == 'Missing': | |
return "I think the auto-fetch feature couldn't fetch model info. If your model is not suitable for this task evaluation then this is expected, but if it's suitable and this behavior happened with you then please open a community discussion in the leaderboard discussion section and we will fix it ASAP.", df_pending | |
# Check if model size is in valid range | |
if float(params) > 5000: | |
return "Model size should be less than 5000 million parameters (5 billion) π", df_pending | |
# Handle 'Missing' precision | |
if precision == 'Missing': | |
precision = None | |
else: | |
precision = precision.strip().lower() | |
# Helper function to check if model exists in a dataframe | |
def model_exists_in_df(df): | |
if df.empty: | |
return False | |
return ((df['model_name'] == model_name) & | |
(df['revision'] == revision) & | |
(df['precision'] == precision)).any() | |
# Check if model is already in pending requests | |
if model_exists_in_df(df_pending): | |
return f"Model {model_name} is already in the evaluation queue as a {task} π", df_pending | |
# Check if model is in finished requests | |
if model_exists_in_df(df_finished): | |
return f"Model {model_name} has already been evaluated as a {task} π", df_pending | |
# Check if model is in failed requests | |
if model_exists_in_df(df_failed): | |
return f"Model {model_name} has previously failed evaluation as a {task} β", df_pending | |
# Check if model exists on HuggingFace Hub | |
try: | |
api.model_info(model_name) | |
except Exception as e: | |
print(f"Error fetching model info: {e}") | |
return f"Model {model_name} not found on HuggingFace Hub π€·ββοΈ", df_pending | |
# Proceed with submission | |
status = "PENDING" | |
# Prepare the submission data | |
submission = { | |
"model_name": model_name, | |
"license": license, | |
"revision": revision, | |
"precision": precision, | |
"status": status, | |
"params": params, | |
"task": task | |
} | |
# Serialize the submission to JSON | |
submission_json = json.dumps(submission, indent=2) | |
# Define the file path in the repository | |
org_model = model_name.split('/') | |
if len(org_model) != 2: | |
return "Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct' π€·ββοΈ", df_pending | |
org, model_id = org_model | |
precision_str = precision if precision else 'Missing' | |
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}_{task.lower()}.json" | |
# Upload the submission to the dataset repository | |
try: | |
api.upload_file( | |
path_or_fileobj=submission_json.encode('utf-8'), | |
path_in_repo=file_path_in_repo, | |
repo_id=DATASET_REPO_ID, | |
repo_type="dataset", | |
token=HF_TOKEN | |
) | |
except Exception as e: | |
print(f"Error uploading file: {e}") | |
return f"Error: Could not submit model '{model_name}' for evaluation.", df_pending | |
df_pending = load_requests('pending', task_type=task) | |
return f"Model {model_name} has been submitted successfully as a {task} π", df_pending | |
def submit_gradio_module(task_type): | |
var = gr.State(value=task_type) | |
with gr.Row(equal_height=True): | |
model_name_input = gr.Textbox( | |
label="Model", | |
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)", | |
scale=4, | |
) | |
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary") | |
with gr.Row(): | |
precision_input = gr.Dropdown( | |
choices=["F16", "F32", "BF16", "I8", "U8", "I16"], | |
label="Precision", | |
value="F16" | |
) | |
license_input = gr.Textbox( | |
label="License", | |
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)", | |
value="Open" | |
) | |
revision_input = gr.Textbox( | |
label="Revision", | |
placeholder="main", | |
value="main" | |
) | |
with gr.Row(): | |
params_input = gr.Textbox( | |
label="Params (in Millions)", | |
interactive=False, | |
) | |
num_downloads_input = gr.Textbox( | |
label="Number of Downloads", | |
interactive=False, | |
) | |
num_likes_input = gr.Textbox( | |
label="Number of Likes", | |
interactive=False, | |
) | |
submit_button = gr.Button("Submit Model", variant="primary") | |
submission_result = gr.Textbox(label="Submission Result", interactive=False) | |
fetch_outputs = [precision_input, license_input, params_input, num_downloads_input, num_likes_input] | |
fetch_data_button.click( | |
fetch_model_information, | |
inputs=[model_name_input], | |
outputs=fetch_outputs | |
) | |
model_name_input.submit( | |
fetch_model_information, | |
inputs=[model_name_input], | |
outputs=fetch_outputs | |
) | |
# Load pending, finished, and failed requests | |
df_pending = load_requests('pending', task_type) | |
df_finished = load_requests('finished', task_type) | |
df_failed = load_requests('failed', task_type) | |
# Display the tables | |
gr.Markdown("## Evaluation Status") | |
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=True): | |
pending_gradio_df = gr.Dataframe(df_pending) | |
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False): | |
if not df_finished.empty: | |
gr.Dataframe(df_finished) | |
else: | |
gr.Markdown("No finished evaluations.") | |
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False): | |
if not df_failed.empty: | |
gr.Dataframe(df_failed) | |
else: | |
gr.Markdown("No failed evaluations.") | |
submit_button.click( | |
submit_model, | |
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var], | |
outputs=[submission_result, pending_gradio_df], | |
) |