MohamedRashad's picture
Update requirements and refactor model submission logic to improve error handling and data loading
b3de191
raw
history blame contribute delete
9.74 kB
import gradio as gr
import pandas as pd
import json
import os
from pathlib import Path
from huggingface_hub import HfApi
from datasets import load_dataset
api = HfApi()
OWNER = "Navid-AI"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"
results_dir = Path(__file__).parent / "results"
# Replace the current HF_TOKEN line with this to add a helpful error message if token is missing
HF_TOKEN = os.environ.get('HF_TOKEN')
if not HF_TOKEN:
print("Warning: HF_TOKEN environment variable not set. API operations requiring authentication will fail.")
HF_TOKEN = None
# Add a helper to load JSON results with optional formatting.
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None):
if file_path.exists():
df = pd.read_json(file_path)
else:
raise FileNotFoundError(f"File '{file_path}' not found.")
if prepare_for_display:
# Apply common mapping for model link formatting.
df[["Model"]] = df[["Model"]].map(lambda x: f'<a href="https://huggingface.co/{x}" target="_blank">{x}</a>')
if drop_cols is not None:
df.drop(columns=drop_cols, inplace=True)
if sort_col is not None:
df.sort_values(sort_col, ascending=False, inplace=True)
return df
def get_model_info(model_id, verbose=False):
try:
model_info = api.model_info(model_id)
num_downloads = model_info.downloads
num_likes = model_info.likes
license = model_info.card_data["license"]
num_parameters = round(model_info.safetensors.total / 1e6)
supported_precisions = list(model_info.safetensors.parameters.keys())
if verbose:
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
print(f"The model has approximately {num_parameters:.2f} billion parameters.")
print(f"The model supports the following precisions: {supported_precisions}")
return num_downloads, num_likes, license, num_parameters, supported_precisions
except Exception as e:
print(f"Error: Could not fetch model information. {str(e)}")
return 0, 0, "Unknown", 0, ["Missing"]
def fetch_model_information(model_name):
try:
num_downloads, num_likes, license, num_parameters, supported_precisions = get_model_info(model_name)
if len(supported_precisions) == 0:
supported_precisions = [None]
except Exception as e:
gr.Error(f"Error: Could not fetch model information. {str(e)}")
return
return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes
def load_requests(status_folder, task_type=None):
# Load the dataset from the HuggingFace Hub
ds = load_dataset(DATASET_REPO_ID, split="test")
df = ds.to_pandas()
# Filter the dataframe based on the status folder and task type
df = df[df['status'] == status_folder.upper()]
df = df[df['task'] == task_type] if task_type else df
df.drop(columns=['status', 'task'], inplace=True)
return df
def submit_model(model_name, revision, precision, params, license, task):
# Load pending and finished requests from the dataset repository
df_pending = load_requests('pending', task_type=task)
df_finished = load_requests('finished', task_type=task)
df_failed = load_requests('failed', task_type=task)
# Check if Auto Fetch feature couldn't fetch model info
if float(params) == 0 and precision == 'Missing':
return "I think the auto-fetch feature couldn't fetch model info. If your model is not suitable for this task evaluation then this is expected, but if it's suitable and this behavior happened with you then please open a community discussion in the leaderboard discussion section and we will fix it ASAP.", df_pending
# Check if model size is in valid range
if float(params) > 5000:
return "Model size should be less than 5000 million parameters (5 billion) πŸ‘€", df_pending
# Handle 'Missing' precision
if precision == 'Missing':
precision = None
else:
precision = precision.strip().lower()
# Helper function to check if model exists in a dataframe
def model_exists_in_df(df):
if df.empty:
return False
return ((df['model_name'] == model_name) &
(df['revision'] == revision) &
(df['precision'] == precision)).any()
# Check if model is already in pending requests
if model_exists_in_df(df_pending):
return f"Model {model_name} is already in the evaluation queue as a {task} πŸ‘", df_pending
# Check if model is in finished requests
if model_exists_in_df(df_finished):
return f"Model {model_name} has already been evaluated as a {task} πŸŽ‰", df_pending
# Check if model is in failed requests
if model_exists_in_df(df_failed):
return f"Model {model_name} has previously failed evaluation as a {task} ❌", df_pending
# Check if model exists on HuggingFace Hub
try:
api.model_info(model_name)
except Exception as e:
print(f"Error fetching model info: {e}")
return f"Model {model_name} not found on HuggingFace Hub πŸ€·β€β™‚οΈ", df_pending
# Proceed with submission
status = "PENDING"
# Prepare the submission data
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision,
"status": status,
"params": params,
"task": task
}
# Serialize the submission to JSON
submission_json = json.dumps(submission, indent=2)
# Define the file path in the repository
org_model = model_name.split('/')
if len(org_model) != 2:
return "Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct' πŸ€·β€β™‚οΈ", df_pending
org, model_id = org_model
precision_str = precision if precision else 'Missing'
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}_{task.lower()}.json"
# Upload the submission to the dataset repository
try:
api.upload_file(
path_or_fileobj=submission_json.encode('utf-8'),
path_in_repo=file_path_in_repo,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=HF_TOKEN
)
except Exception as e:
print(f"Error uploading file: {e}")
return f"Error: Could not submit model '{model_name}' for evaluation.", df_pending
df_pending = load_requests('pending', task_type=task)
return f"Model {model_name} has been submitted successfully as a {task} πŸš€", df_pending
def submit_gradio_module(task_type):
var = gr.State(value=task_type)
with gr.Row(equal_height=True):
model_name_input = gr.Textbox(
label="Model",
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
scale=4,
)
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
with gr.Row():
precision_input = gr.Dropdown(
choices=["F16", "F32", "BF16", "I8", "U8", "I16"],
label="Precision",
value="F16"
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open"
)
revision_input = gr.Textbox(
label="Revision",
placeholder="main",
value="main"
)
with gr.Row():
params_input = gr.Textbox(
label="Params (in Millions)",
interactive=False,
)
num_downloads_input = gr.Textbox(
label="Number of Downloads",
interactive=False,
)
num_likes_input = gr.Textbox(
label="Number of Likes",
interactive=False,
)
submit_button = gr.Button("Submit Model", variant="primary")
submission_result = gr.Textbox(label="Submission Result", interactive=False)
fetch_outputs = [precision_input, license_input, params_input, num_downloads_input, num_likes_input]
fetch_data_button.click(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
model_name_input.submit(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
# Load pending, finished, and failed requests
df_pending = load_requests('pending', task_type)
df_finished = load_requests('finished', task_type)
df_failed = load_requests('failed', task_type)
# Display the tables
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=True):
pending_gradio_df = gr.Dataframe(df_pending)
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
if not df_finished.empty:
gr.Dataframe(df_finished)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")
submit_button.click(
submit_model,
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var],
outputs=[submission_result, pending_gradio_df],
)