File size: 9,740 Bytes
eb50697
 
 
 
 
b3de191
 
eb50697
 
 
f21842d
 
 
7b90636
eb50697
6efebdc
 
 
 
 
7b90636
fe19b0b
 
 
 
 
 
7b90636
fe19b0b
cbdd9d6
fe19b0b
 
 
 
eb50697
 
 
f5f7856
 
 
 
 
 
 
 
 
 
 
 
 
887de83
b3de191
eb50697
 
 
f6f28fc
eb50697
 
 
cf880c9
eb50697
f6f28fc
eb50697
b3de191
 
 
 
 
 
 
 
 
 
 
887de83
b3de191
 
 
 
 
 
 
 
 
887de83
b3de191
887de83
b3de191
eb50697
 
 
 
 
 
b3de191
 
 
 
 
 
 
 
 
 
 
 
 
eb50697
 
b3de191
 
4ab84d8
 
b3de191
 
eb50697
 
 
 
 
7738e98
b3de191
eb50697
 
 
 
 
 
 
 
 
 
 
d787cff
 
eb50697
 
 
 
 
 
 
 
b3de191
eb50697
 
ba07ad3
eb50697
 
 
 
 
 
 
 
fe19b0b
eb50697
 
ba07ad3
b3de191
eb50697
b3de191
 
eb50697
 
99871cf
d8f6ba2
492c93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb50697
492c93e
 
 
eb50697
492c93e
 
 
eb50697
492c93e
 
01f0578
492c93e
eb50697
492c93e
 
 
 
 
 
 
 
 
 
 
 
fa1c579
 
 
eb50697
492c93e
 
b3de191
 
492c93e
 
 
 
 
 
 
 
 
 
6efebdc
 
 
b3de191
6efebdc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import pandas as pd
import json
import os
from pathlib import Path
from huggingface_hub import HfApi
from datasets import load_dataset

api = HfApi()

OWNER = "Navid-AI"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"

results_dir = Path(__file__).parent / "results"

# Replace the current HF_TOKEN line with this to add a helpful error message if token is missing
HF_TOKEN = os.environ.get('HF_TOKEN')
if not HF_TOKEN:
    print("Warning: HF_TOKEN environment variable not set. API operations requiring authentication will fail.")
    HF_TOKEN = None

# Add a helper to load JSON results with optional formatting.
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None):
    if file_path.exists():
        df = pd.read_json(file_path)
    else:
        raise FileNotFoundError(f"File '{file_path}' not found.")
    if prepare_for_display:
        # Apply common mapping for model link formatting.
        df[["Model"]] = df[["Model"]].map(lambda x: f'<a href="https://huggingface.co/{x}" target="_blank">{x}</a>')
        if drop_cols is not None:
            df.drop(columns=drop_cols, inplace=True)
        if sort_col is not None:
            df.sort_values(sort_col, ascending=False, inplace=True)
    return df

def get_model_info(model_id, verbose=False):
    try:
        model_info = api.model_info(model_id)
        num_downloads = model_info.downloads
        num_likes = model_info.likes
        license = model_info.card_data["license"]
        num_parameters = round(model_info.safetensors.total / 1e6)
        supported_precisions = list(model_info.safetensors.parameters.keys())
        if verbose:
            print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
            print(f"The model has approximately {num_parameters:.2f} billion parameters.")
            print(f"The model supports the following precisions: {supported_precisions}")
        return num_downloads, num_likes, license, num_parameters, supported_precisions
    except Exception as e:
        print(f"Error: Could not fetch model information. {str(e)}")
        return 0, 0, "Unknown", 0, ["Missing"]

def fetch_model_information(model_name):
    try:
        num_downloads, num_likes, license, num_parameters, supported_precisions = get_model_info(model_name)
        if len(supported_precisions) == 0:
            supported_precisions = [None]
    except Exception as e:
        gr.Error(f"Error: Could not fetch model information. {str(e)}")
        return
    return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes

def load_requests(status_folder, task_type=None):
    # Load the dataset from the HuggingFace Hub
    ds = load_dataset(DATASET_REPO_ID, split="test")
    df = ds.to_pandas()

    # Filter the dataframe based on the status folder and task type
    df = df[df['status'] == status_folder.upper()]
    df = df[df['task'] == task_type] if task_type else df
    df.drop(columns=['status', 'task'], inplace=True)

    return df

def submit_model(model_name, revision, precision, params, license, task):
    # Load pending and finished requests from the dataset repository
    df_pending = load_requests('pending', task_type=task)
    df_finished = load_requests('finished', task_type=task)
    df_failed = load_requests('failed', task_type=task)

    # Check if Auto Fetch feature couldn't fetch model info
    if float(params) == 0 and precision == 'Missing':
        return "I think the auto-fetch feature couldn't fetch model info. If your model is not suitable for this task evaluation then this is expected, but if it's suitable and this behavior happened with you then please open a community discussion in the leaderboard discussion section and we will fix it ASAP.", df_pending
    
    # Check if model size is in valid range
    if float(params) > 5000:
        return "Model size should be less than 5000 million parameters (5 billion) πŸ‘€", df_pending

    # Handle 'Missing' precision
    if precision == 'Missing':
        precision = None
    else:
        precision = precision.strip().lower()
    
    # Helper function to check if model exists in a dataframe
    def model_exists_in_df(df):

        if df.empty:
            return False
        return ((df['model_name'] == model_name) & 
                (df['revision'] == revision) & 
                (df['precision'] == precision)).any()
    
    # Check if model is already in pending requests
    if model_exists_in_df(df_pending):
        return f"Model {model_name} is already in the evaluation queue as a {task} πŸ‘", df_pending

    # Check if model is in finished requests
    if model_exists_in_df(df_finished):
        return f"Model {model_name} has already been evaluated as a {task} πŸŽ‰", df_pending
        
    # Check if model is in failed requests
    if model_exists_in_df(df_failed):
        return f"Model {model_name} has previously failed evaluation as a {task} ❌", df_pending

    # Check if model exists on HuggingFace Hub
    try:
        api.model_info(model_name)
    except Exception as e:
        print(f"Error fetching model info: {e}")
        return f"Model {model_name} not found on HuggingFace Hub πŸ€·β€β™‚οΈ", df_pending

    # Proceed with submission
    status = "PENDING"

    # Prepare the submission data
    submission = {
        "model_name": model_name,
        "license": license,
        "revision": revision,
        "precision": precision,
        "status": status,
        "params": params,
        "task": task
    }

    # Serialize the submission to JSON
    submission_json = json.dumps(submission, indent=2)

    # Define the file path in the repository
    org_model = model_name.split('/')
    if len(org_model) != 2:
        return "Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct' πŸ€·β€β™‚οΈ", df_pending
    org, model_id = org_model
    precision_str = precision if precision else 'Missing'
    file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}_{task.lower()}.json"

    # Upload the submission to the dataset repository
    try:
        api.upload_file(
            path_or_fileobj=submission_json.encode('utf-8'),
            path_in_repo=file_path_in_repo,
            repo_id=DATASET_REPO_ID,
            repo_type="dataset",
            token=HF_TOKEN
        )
    except Exception as e:
        print(f"Error uploading file: {e}")
        return f"Error: Could not submit model '{model_name}' for evaluation.", df_pending

    df_pending = load_requests('pending', task_type=task)
    return f"Model {model_name} has been submitted successfully as a {task} πŸš€", df_pending


def submit_gradio_module(task_type):
    var = gr.State(value=task_type)
    with gr.Row(equal_height=True):
        model_name_input = gr.Textbox(
            label="Model", 
            placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
            scale=4,
        )
        fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
    
    with gr.Row():
        precision_input = gr.Dropdown(
            choices=["F16", "F32", "BF16", "I8", "U8", "I16"], 
            label="Precision",
            value="F16"
        )
        license_input = gr.Textbox(
            label="License", 
            placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)", 
            value="Open"
        )
        revision_input = gr.Textbox(
            label="Revision", 
            placeholder="main", 
            value="main"
        )
    
    with gr.Row():
        params_input = gr.Textbox(
            label="Params (in Millions)",
            interactive=False,
        )
        num_downloads_input = gr.Textbox(
            label="Number of Downloads",
            interactive=False,
        )
        num_likes_input = gr.Textbox(
            label="Number of Likes",
            interactive=False,
        )
    
    submit_button = gr.Button("Submit Model", variant="primary")
    submission_result = gr.Textbox(label="Submission Result", interactive=False)
    fetch_outputs = [precision_input, license_input, params_input, num_downloads_input, num_likes_input]

    fetch_data_button.click(
        fetch_model_information,
        inputs=[model_name_input],
        outputs=fetch_outputs
    )
    model_name_input.submit(
        fetch_model_information,
        inputs=[model_name_input],
        outputs=fetch_outputs
    )
    
    # Load pending, finished, and failed requests
    df_pending = load_requests('pending', task_type)
    df_finished = load_requests('finished', task_type)
    df_failed = load_requests('failed', task_type)

    # Display the tables
    gr.Markdown("## Evaluation Status")
    with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=True):
        pending_gradio_df = gr.Dataframe(df_pending)
    with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
        if not df_finished.empty:
            gr.Dataframe(df_finished)
        else:
            gr.Markdown("No finished evaluations.")
    with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
        if not df_failed.empty:
            gr.Dataframe(df_failed)
        else:
            gr.Markdown("No failed evaluations.")

    submit_button.click(
        submit_model,
        inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var],
        outputs=[submission_result, pending_gradio_df],
    )