Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,740 Bytes
eb50697 b3de191 eb50697 f21842d 7b90636 eb50697 6efebdc 7b90636 fe19b0b 7b90636 fe19b0b cbdd9d6 fe19b0b eb50697 f5f7856 887de83 b3de191 eb50697 f6f28fc eb50697 cf880c9 eb50697 f6f28fc eb50697 b3de191 887de83 b3de191 887de83 b3de191 887de83 b3de191 eb50697 b3de191 eb50697 b3de191 4ab84d8 b3de191 eb50697 7738e98 b3de191 eb50697 d787cff eb50697 b3de191 eb50697 ba07ad3 eb50697 fe19b0b eb50697 ba07ad3 b3de191 eb50697 b3de191 eb50697 99871cf d8f6ba2 492c93e eb50697 492c93e eb50697 492c93e eb50697 492c93e 01f0578 492c93e eb50697 492c93e fa1c579 eb50697 492c93e b3de191 492c93e 6efebdc b3de191 6efebdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import pandas as pd
import json
import os
from pathlib import Path
from huggingface_hub import HfApi
from datasets import load_dataset
api = HfApi()
OWNER = "Navid-AI"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"
results_dir = Path(__file__).parent / "results"
# Replace the current HF_TOKEN line with this to add a helpful error message if token is missing
HF_TOKEN = os.environ.get('HF_TOKEN')
if not HF_TOKEN:
print("Warning: HF_TOKEN environment variable not set. API operations requiring authentication will fail.")
HF_TOKEN = None
# Add a helper to load JSON results with optional formatting.
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None):
if file_path.exists():
df = pd.read_json(file_path)
else:
raise FileNotFoundError(f"File '{file_path}' not found.")
if prepare_for_display:
# Apply common mapping for model link formatting.
df[["Model"]] = df[["Model"]].map(lambda x: f'<a href="https://huggingface.co/{x}" target="_blank">{x}</a>')
if drop_cols is not None:
df.drop(columns=drop_cols, inplace=True)
if sort_col is not None:
df.sort_values(sort_col, ascending=False, inplace=True)
return df
def get_model_info(model_id, verbose=False):
try:
model_info = api.model_info(model_id)
num_downloads = model_info.downloads
num_likes = model_info.likes
license = model_info.card_data["license"]
num_parameters = round(model_info.safetensors.total / 1e6)
supported_precisions = list(model_info.safetensors.parameters.keys())
if verbose:
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
print(f"The model has approximately {num_parameters:.2f} billion parameters.")
print(f"The model supports the following precisions: {supported_precisions}")
return num_downloads, num_likes, license, num_parameters, supported_precisions
except Exception as e:
print(f"Error: Could not fetch model information. {str(e)}")
return 0, 0, "Unknown", 0, ["Missing"]
def fetch_model_information(model_name):
try:
num_downloads, num_likes, license, num_parameters, supported_precisions = get_model_info(model_name)
if len(supported_precisions) == 0:
supported_precisions = [None]
except Exception as e:
gr.Error(f"Error: Could not fetch model information. {str(e)}")
return
return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes
def load_requests(status_folder, task_type=None):
# Load the dataset from the HuggingFace Hub
ds = load_dataset(DATASET_REPO_ID, split="test")
df = ds.to_pandas()
# Filter the dataframe based on the status folder and task type
df = df[df['status'] == status_folder.upper()]
df = df[df['task'] == task_type] if task_type else df
df.drop(columns=['status', 'task'], inplace=True)
return df
def submit_model(model_name, revision, precision, params, license, task):
# Load pending and finished requests from the dataset repository
df_pending = load_requests('pending', task_type=task)
df_finished = load_requests('finished', task_type=task)
df_failed = load_requests('failed', task_type=task)
# Check if Auto Fetch feature couldn't fetch model info
if float(params) == 0 and precision == 'Missing':
return "I think the auto-fetch feature couldn't fetch model info. If your model is not suitable for this task evaluation then this is expected, but if it's suitable and this behavior happened with you then please open a community discussion in the leaderboard discussion section and we will fix it ASAP.", df_pending
# Check if model size is in valid range
if float(params) > 5000:
return "Model size should be less than 5000 million parameters (5 billion) π", df_pending
# Handle 'Missing' precision
if precision == 'Missing':
precision = None
else:
precision = precision.strip().lower()
# Helper function to check if model exists in a dataframe
def model_exists_in_df(df):
if df.empty:
return False
return ((df['model_name'] == model_name) &
(df['revision'] == revision) &
(df['precision'] == precision)).any()
# Check if model is already in pending requests
if model_exists_in_df(df_pending):
return f"Model {model_name} is already in the evaluation queue as a {task} π", df_pending
# Check if model is in finished requests
if model_exists_in_df(df_finished):
return f"Model {model_name} has already been evaluated as a {task} π", df_pending
# Check if model is in failed requests
if model_exists_in_df(df_failed):
return f"Model {model_name} has previously failed evaluation as a {task} β", df_pending
# Check if model exists on HuggingFace Hub
try:
api.model_info(model_name)
except Exception as e:
print(f"Error fetching model info: {e}")
return f"Model {model_name} not found on HuggingFace Hub π€·ββοΈ", df_pending
# Proceed with submission
status = "PENDING"
# Prepare the submission data
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision,
"status": status,
"params": params,
"task": task
}
# Serialize the submission to JSON
submission_json = json.dumps(submission, indent=2)
# Define the file path in the repository
org_model = model_name.split('/')
if len(org_model) != 2:
return "Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct' π€·ββοΈ", df_pending
org, model_id = org_model
precision_str = precision if precision else 'Missing'
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}_{task.lower()}.json"
# Upload the submission to the dataset repository
try:
api.upload_file(
path_or_fileobj=submission_json.encode('utf-8'),
path_in_repo=file_path_in_repo,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=HF_TOKEN
)
except Exception as e:
print(f"Error uploading file: {e}")
return f"Error: Could not submit model '{model_name}' for evaluation.", df_pending
df_pending = load_requests('pending', task_type=task)
return f"Model {model_name} has been submitted successfully as a {task} π", df_pending
def submit_gradio_module(task_type):
var = gr.State(value=task_type)
with gr.Row(equal_height=True):
model_name_input = gr.Textbox(
label="Model",
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
scale=4,
)
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
with gr.Row():
precision_input = gr.Dropdown(
choices=["F16", "F32", "BF16", "I8", "U8", "I16"],
label="Precision",
value="F16"
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open"
)
revision_input = gr.Textbox(
label="Revision",
placeholder="main",
value="main"
)
with gr.Row():
params_input = gr.Textbox(
label="Params (in Millions)",
interactive=False,
)
num_downloads_input = gr.Textbox(
label="Number of Downloads",
interactive=False,
)
num_likes_input = gr.Textbox(
label="Number of Likes",
interactive=False,
)
submit_button = gr.Button("Submit Model", variant="primary")
submission_result = gr.Textbox(label="Submission Result", interactive=False)
fetch_outputs = [precision_input, license_input, params_input, num_downloads_input, num_likes_input]
fetch_data_button.click(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
model_name_input.submit(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
# Load pending, finished, and failed requests
df_pending = load_requests('pending', task_type)
df_finished = load_requests('finished', task_type)
df_failed = load_requests('failed', task_type)
# Display the tables
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=True):
pending_gradio_df = gr.Dataframe(df_pending)
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
if not df_finished.empty:
gr.Dataframe(df_finished)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")
submit_button.click(
submit_model,
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var],
outputs=[submission_result, pending_gradio_df],
) |