Spaces:
Running
Running
File size: 18,425 Bytes
e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c e89b55b 343474c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# voice_emotion_classification.py
import os
import subprocess
import sys
import pkg_resources
import time
import tempfile
import numpy as np
import warnings
from pathlib import Path
warnings.filterwarnings("ignore")
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
# Required packages (you may add version pins if necessary)
required_packages = {
"gradio": None,
"torch": None,
"torchaudio": None,
"transformers": None,
"librosa": None,
"scipy": None,
"matplotlib": None,
"pydub": None
}
installed_packages = {pkg.key for pkg in pkg_resources.working_set}
for package, version in required_packages.items():
if package not in installed_packages:
install_package(package, version)
# Now import all necessary packages
import gradio as gr
import torch
import torchaudio
import librosa
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from pydub import AudioSegment
import scipy
import io
from transformers import pipeline, AutoFeatureExtractor, AutoModelForAudioClassification
from pathlib import Path
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
# Define emotion labels, tone mapping, and descriptions
EMOTION_DESCRIPTIONS = {
"angry": "Voice shows irritation, hostility, or aggression. Tone may be harsh, loud, or intense.",
"disgust": "Voice expresses revulsion or strong disapproval. Tone may sound repulsed or contemptuous.",
"fear": "Voice reveals anxiety, worry, or dread. Tone may be shaky, hesitant, or tense.",
"happy": "Voice conveys joy, pleasure, or positive emotions. Tone is often bright, energetic, and uplifted.",
"neutral": "Voice lacks strong emotional signals. Tone is even, moderate, and relatively flat.",
"sad": "Voice expresses sorrow, unhappiness, or melancholy. Tone may be quiet, heavy, or subdued.",
"surprise": "Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic."
}
# Here we map emotion to a generalized tone (for example, negative or positive)
TONE_MAPPING = {
"positive": ["happy", "surprise"],
"neutral": ["neutral"],
"negative": ["angry", "sad", "fear", "disgust"]
}
# Some Hugging Face models return short labels (e.g., "hap", "ang", etc.).
# This mapping will ensure they're translated into our full canonical labels.
MODEL_TO_EMOTION_MAP = {
"hap": "happy",
"ang": "angry",
"sad": "sad",
"dis": "disgust",
"fea": "fear",
"neu": "neutral",
"sur": "surprise"
}
# Global variable for the emotion classifier
audio_emotion_classifier = None
def load_emotion_model():
"""Load the emotion classification model once and cache it."""
global audio_emotion_classifier
if audio_emotion_classifier is None:
try:
print("Loading emotion classification model...")
# Using the Hugging Face pipeline with the new model that classifies speech emotion
model_name = "superb/hubert-large-superb-er"
audio_emotion_classifier = pipeline("audio-classification", model=model_name)
print("Emotion classification model loaded successfully")
return True
except Exception as e:
print(f"Error loading emotion model: {e}")
return False
return True
def convert_audio_to_wav(audio_file):
"""Convert the uploaded audio to WAV format."""
try:
audio = AudioSegment.from_file(audio_file)
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
wav_path = temp_wav.name
audio.export(wav_path, format="wav")
return wav_path
except Exception as e:
print(f"Error converting audio: {e}")
return None
def analyze_audio_emotions(audio_file, progress=gr.Progress(), chunk_duration=5):
"""
Analyze emotions in an audio file by processing it in chunks.
Returns a visualization, processed audio path, summary, and detailed results.
"""
if not load_emotion_model():
return None, "Failed to load emotion classification model. Please check console for details."
# If the file is already a WAV, use it directly; else convert it.
if audio_file.endswith('.wav'):
audio_path = audio_file
else:
audio_path = convert_audio_to_wav(audio_file)
if not audio_path:
return None, "Failed to process audio file. Unsupported format or corrupted file."
try:
# Load the audio using librosa
audio_data, sample_rate = librosa.load(audio_path, sr=16000)
duration = len(audio_data) / sample_rate
# Process in chunks for long files
chunk_samples = int(chunk_duration * sample_rate)
num_chunks = max(1, int(np.ceil(len(audio_data) / chunk_samples)))
all_emotions = []
time_points = []
for i in range(num_chunks):
progress((i + 1) / num_chunks, "Analyzing audio emotions...")
start_idx = i * chunk_samples
end_idx = min(start_idx + chunk_samples, len(audio_data))
chunk = audio_data[start_idx:end_idx]
# Skip too-short chunks (<0.5 seconds)
if len(chunk) < 0.5 * sample_rate:
continue
# Create a temporary file for this audio chunk
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_chunk:
chunk_path = temp_chunk.name
scipy.io.wavfile.write(chunk_path, sample_rate, (chunk * 32767).astype(np.int16))
# Get emotion classification results on this chunk
results = audio_emotion_classifier(chunk_path)
os.unlink(chunk_path) # Remove the temporary file
all_emotions.append(results)
time_points.append((start_idx / sample_rate, end_idx / sample_rate))
# Generate visualization and summary
fig, detailed_results = generate_emotion_timeline(all_emotions, time_points, duration)
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_img:
img_path = temp_img.name
fig.savefig(img_path, dpi=100, bbox_inches='tight')
plt.close(fig)
summary = generate_emotion_summary(all_emotions, time_points)
return img_path, audio_path, summary, detailed_results
except Exception as e:
print(f"Error analyzing audio: {e}")
import traceback
traceback.print_exc()
return None, None, f"Error analyzing audio: {str(e)}", None
def generate_emotion_timeline(all_emotions, time_points, duration):
"""
Generate a bar chart visualization of emotion percentages with tone analysis.
Returns the matplotlib figure and a list of detailed results.
"""
# All possible emotion labels from our dictionary
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
# We'll accumulate counts based on our canonical labels (e.g., "happy", "angry").
emotion_counts = {}
for emotions in all_emotions:
if not emotions:
continue
# The pipeline returns items like {"label": "Hap", "score": 0.95}, etc.
top_emotion = max(emotions, key=lambda x: x['score'])
# Normalize the label from the model to a canonical label used in EMOTION_DESCRIPTIONS
raw_label = top_emotion['label'].lower().strip() # e.g., "hap", "ang", ...
canonical_label = MODEL_TO_EMOTION_MAP.get(raw_label, raw_label)
# If there's no mapping, we leave it as raw_label.
# But typically, it should be one of "happy", "angry", "disgust", "fear", "sad", "neutral", "surprise".
# Count how many times each canonical label appears
emotion_counts[canonical_label] = emotion_counts.get(canonical_label, 0) + 1
total_chunks = len(all_emotions)
emotion_percentages = {
e: (count / total_chunks * 100) for e, count in emotion_counts.items()
}
# Create empty percentages for emotions that didn't appear
for label in emotion_labels:
if label not in emotion_percentages:
emotion_percentages[label] = 0.0
# Sort emotions by percentage
sorted_emotions = sorted(emotion_percentages.items(), key=lambda x: x[1], reverse=True)
# Create the bar chart with subplots: one for emotions and one for tone
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10), height_ratios=[3, 1], gridspec_kw={'hspace': 0.3})
# Capitalize each label for a nice display
emotions = [item[0].capitalize() for item in sorted_emotions]
percentages = [item[1] for item in sorted_emotions]
# Custom colors for emotions (enough for 7 emotions)
colors = ['red', 'brown', 'purple', 'green', 'gray', 'blue', 'orange']
if len(emotions) <= len(colors):
bar_colors = colors[:len(emotions)]
else:
# fallback if there's more emotions than colors
bar_colors = colors + ['#666666'] * (len(emotions) - len(colors))
# Plot emotion bars
bars = ax1.bar(emotions, percentages, color=bar_colors)
# Add percentage labels on top of each bar
for bar in bars:
height = bar.get_height()
ax1.annotate(f'{height:.1f}%',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
ax1.set_ylim(0, 100) # Fixed 100% scale
ax1.set_ylabel('Percentage (%)')
ax1.set_title('Emotion Distribution')
ax1.grid(axis='y', linestyle='--', alpha=0.7)
# Calculate tone percentages based on the canonical labels we found
tone_percentages = {"positive": 0, "neutral": 0, "negative": 0}
for emotion_label, percentage in emotion_percentages.items():
for tone, emotions_list in TONE_MAPPING.items():
if emotion_label in emotions_list:
tone_percentages[tone] += percentage
# Plot tone bars
tones = list(tone_percentages.keys())
tone_values = list(tone_percentages.values())
tone_colors = {'positive': 'green', 'neutral': 'gray', 'negative': 'red'}
tone_bars = ax2.bar(tones, tone_values, color=[tone_colors[t] for t in tones])
# Add percentage labels on tone bars
for bar in tone_bars:
height = bar.get_height()
if height > 0: # Only add label if there's a visible bar
ax2.annotate(f'{height:.1f}%',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
ax2.set_ylim(0, 100)
ax2.set_ylabel('Percentage (%)')
ax2.set_title('Tone Analysis')
ax2.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
# Generate a more detailed time-segmented result
detailed_results = []
for idx, (emotions, (start_time, end_time)) in enumerate(zip(all_emotions, time_points)):
if not emotions:
continue
top_emotion = max(emotions, key=lambda x: x['score'])
raw_label = top_emotion['label'].lower().strip()
canonical_label = MODEL_TO_EMOTION_MAP.get(raw_label, raw_label)
# Determine the tone for this emotion
# (based on canonical_label rather than the raw model label)
tone = next((t for t, e_list in TONE_MAPPING.items() if canonical_label in e_list), "unknown")
detailed_results.append({
'Time Range': f"{start_time:.1f}s - {end_time:.1f}s",
'Emotion': canonical_label,
'Tone': tone.capitalize(),
'Confidence': f"{top_emotion['score']:.2f}",
'Description': EMOTION_DESCRIPTIONS.get(canonical_label, "")
})
return fig, detailed_results
def generate_emotion_summary(all_emotions, time_points):
"""
Create a summary text from the emotion analysis.
Counts occurrences and computes percentages of the dominant emotion.
"""
if not all_emotions:
return "No emotional content detected."
emotion_counts = {}
total_chunks = len(all_emotions)
for emotions in all_emotions:
if not emotions:
continue
top_emotion = max(emotions, key=lambda x: x['score'])
# Normalize the label
raw_label = top_emotion['label'].lower().strip()
canonical_label = MODEL_TO_EMOTION_MAP.get(raw_label, raw_label)
emotion_counts[canonical_label] = emotion_counts.get(canonical_label, 0) + 1
emotion_percentages = {
e: (count / total_chunks * 100)
for e, count in emotion_counts.items()
}
if not emotion_percentages:
return "No emotional content detected."
# Find the dominant emotion (highest percentage)
dominant_emotion = max(emotion_percentages.items(), key=lambda x: x[1])[0]
summary = f"### Voice Emotion Analysis Summary\n\n"
summary += f"**Dominant emotion:** {dominant_emotion.capitalize()} ({emotion_percentages[dominant_emotion]:.1f}%)\n\n"
summary += f"**Description:** {EMOTION_DESCRIPTIONS.get(dominant_emotion, '')}\n\n"
summary += "**Emotion distribution:**\n"
for emotion, percentage in sorted(emotion_percentages.items(), key=lambda x: x[1], reverse=True):
summary += f"- {emotion.capitalize()}: {percentage:.1f}%\n"
summary += "\n**Interpretation:** The voice predominantly expresses {0} emotion".format(dominant_emotion)
return summary
def record_audio(audio):
"""Save recorded audio and analyze emotions."""
try:
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
audio_path = temp_file.name
with open(audio_path, 'wb') as f:
f.write(audio)
return audio_path
except Exception as e:
print(f"Error saving recorded audio: {e}")
return None
def process_audio(audio_file, progress=gr.Progress()):
"""Process the audio file and analyze emotions."""
if audio_file is None:
return None, None, "No audio file provided.", None
img_path, processed_audio, summary, results = analyze_audio_emotions(audio_file, progress)
if img_path is None:
return None, None, "Failed to analyze audio emotions.", None
return img_path, processed_audio, summary, results
# Create Gradio interface
with gr.Blocks(title="Voice Emotion Analysis System") as demo:
gr.Markdown("""
# ποΈ Voice Emotion Analysis System
This app analyzes the emotional content of voice recordings.
It detects emotions including:
* π‘ **Anger**
* π€’ **Disgust**
* π¨ **Fear**
* π **Happiness**
* π **Neutral**
* π’ **Sadness**
* π² **Surprise**
And provides a detailed analysis and timeline.
""")
with gr.Tabs():
with gr.TabItem("Upload Audio"):
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload"]
)
process_btn = gr.Button("Analyze Voice Emotions")
with gr.Column(scale=2):
emotion_timeline = gr.Image(label="Emotion Timeline", show_label=True)
with gr.Row():
audio_playback = gr.Audio(label="Processed Audio", show_label=True)
emotion_summary = gr.Markdown(label="Emotion Summary")
with gr.Row():
emotion_results = gr.DataFrame(
headers=["Time Range", "Emotion", "Tone", "Confidence", "Description"],
label="Detailed Emotion Analysis"
)
process_btn.click(
fn=process_audio,
inputs=[audio_input],
outputs=[emotion_timeline, audio_playback, emotion_summary, emotion_results]
)
with gr.TabItem("Record Voice"):
with gr.Row():
with gr.Column(scale=1):
record_input = gr.Audio(
label="Record Your Voice",
sources=["microphone"],
type="filepath"
)
analyze_btn = gr.Button("Analyze Recording")
with gr.Column(scale=2):
rec_emotion_timeline = gr.Image(label="Emotion Timeline", show_label=True)
with gr.Row():
rec_audio_playback = gr.Audio(label="Processed Audio", show_label=True)
rec_emotion_summary = gr.Markdown(label="Emotion Summary")
with gr.Row():
rec_emotion_results = gr.DataFrame(
headers=["Time Range", "Emotion", "Tone", "Confidence", "Description"],
label="Detailed Emotion Analysis"
)
analyze_btn.click(
fn=process_audio,
inputs=[record_input],
outputs=[rec_emotion_timeline, rec_audio_playback, rec_emotion_summary, rec_emotion_results]
)
gr.Markdown("""
### How to Use
1. **Upload Audio Tab:** Upload an audio file and click "Analyze Voice Emotions".
2. **Record Voice Tab:** Record your voice and click "Analyze Recording".
**Tips:**
- Use clear recordings with minimal background noise.
- Longer recordings yield more consistent results.
""")
def initialize_app():
print("Initializing voice emotion analysis app...")
if load_emotion_model():
print("Emotion model loaded successfully!")
else:
print("Failed to load emotion model.")
if __name__ == "__main__":
initialize_app()
demo.launch()
|