Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
import sys
|
@@ -18,7 +20,7 @@ def install_package(package, version=None):
|
|
18 |
print(f"Failed to install {package_spec}: {e}")
|
19 |
raise
|
20 |
|
21 |
-
# Required packages (add version pins if
|
22 |
required_packages = {
|
23 |
"gradio": None,
|
24 |
"torch": None,
|
@@ -27,8 +29,7 @@ required_packages = {
|
|
27 |
"librosa": None,
|
28 |
"scipy": None,
|
29 |
"matplotlib": None,
|
30 |
-
"pydub": None
|
31 |
-
"plotly": None
|
32 |
}
|
33 |
|
34 |
installed_packages = {pkg.key for pkg in pkg_resources.working_set}
|
@@ -36,18 +37,20 @@ for package, version in required_packages.items():
|
|
36 |
if package not in installed_packages:
|
37 |
install_package(package, version)
|
38 |
|
39 |
-
# Now import necessary packages
|
40 |
import gradio as gr
|
41 |
import torch
|
42 |
import torchaudio
|
43 |
import librosa
|
44 |
-
import matplotlib
|
45 |
-
matplotlib.
|
46 |
from pydub import AudioSegment
|
47 |
import scipy
|
48 |
import io
|
49 |
from transformers import pipeline, AutoFeatureExtractor, AutoModelForAudioClassification
|
50 |
-
|
|
|
|
|
51 |
|
52 |
# Define emotion labels, tone mapping, and descriptions
|
53 |
EMOTION_DESCRIPTIONS = {
|
@@ -60,22 +63,35 @@ EMOTION_DESCRIPTIONS = {
|
|
60 |
"surprise": "Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic."
|
61 |
}
|
62 |
|
63 |
-
#
|
64 |
TONE_MAPPING = {
|
65 |
"positive": ["happy", "surprise"],
|
66 |
"neutral": ["neutral"],
|
67 |
"negative": ["angry", "sad", "fear", "disgust"]
|
68 |
}
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Global variable for the emotion classifier
|
71 |
audio_emotion_classifier = None
|
72 |
|
73 |
def load_emotion_model():
|
74 |
-
"""Load
|
75 |
global audio_emotion_classifier
|
76 |
if audio_emotion_classifier is None:
|
77 |
try:
|
78 |
print("Loading emotion classification model...")
|
|
|
79 |
model_name = "superb/hubert-large-superb-er"
|
80 |
audio_emotion_classifier = pipeline("audio-classification", model=model_name)
|
81 |
print("Emotion classification model loaded successfully")
|
@@ -86,7 +102,7 @@ def load_emotion_model():
|
|
86 |
return True
|
87 |
|
88 |
def convert_audio_to_wav(audio_file):
|
89 |
-
"""Convert uploaded audio to WAV format."""
|
90 |
try:
|
91 |
audio = AudioSegment.from_file(audio_file)
|
92 |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
|
@@ -97,749 +113,354 @@ def convert_audio_to_wav(audio_file):
|
|
97 |
print(f"Error converting audio: {e}")
|
98 |
return None
|
99 |
|
100 |
-
def
|
101 |
-
"""
|
102 |
-
Analyze the tone characteristics of the voice using more robust measurements.
|
103 |
-
Includes pitch variation, energy dynamics, and spectral features.
|
104 |
-
"""
|
105 |
-
try:
|
106 |
-
audio_data, sample_rate = librosa.load(audio_file, sr=16000)
|
107 |
-
|
108 |
-
# 1. Basic audio features
|
109 |
-
audio_duration = librosa.get_duration(y=audio_data, sr=sample_rate)
|
110 |
-
if audio_duration < 1.0: # Too short for reliable analysis
|
111 |
-
return "Audio too short for reliable tone analysis. Please provide at least 3 seconds."
|
112 |
-
|
113 |
-
# 2. Pitch analysis with more robust handling
|
114 |
-
f0, voiced_flag, voiced_prob = librosa.pyin(
|
115 |
-
audio_data,
|
116 |
-
fmin=librosa.note_to_hz('C2'),
|
117 |
-
fmax=librosa. note_to_hz('C7'),
|
118 |
-
sr=sample_rate
|
119 |
-
)
|
120 |
-
|
121 |
-
# Filter out NaN values and get valid pitch points
|
122 |
-
valid_f0 = f0[~np.isnan(f0)]
|
123 |
-
|
124 |
-
# If no pitch detected, may be noise or silence
|
125 |
-
if len(valid_f0) < 10:
|
126 |
-
return "**Voice Tone Analysis:** Unable to detect sufficient pitched content for analysis. The audio may contain primarily noise, silence, or non-speech sounds."
|
127 |
-
|
128 |
-
# 3. Calculate improved statistics
|
129 |
-
mean_pitch = np.mean(valid_f0)
|
130 |
-
median_pitch = np.median(valid_f0)
|
131 |
-
std_pitch = np.std(valid_f0)
|
132 |
-
pitch_range = np.percentile(valid_f0, 95) - np.percentile(valid_f0, 5)
|
133 |
-
|
134 |
-
# 4. Energy/volume dynamics
|
135 |
-
rms_energy = librosa.feature.rms(y=audio_data)[0]
|
136 |
-
mean_energy = np.mean(rms_energy)
|
137 |
-
std_energy = np.std(rms_energy)
|
138 |
-
energy_range = np.percentile(rms_energy, 95) - np.percentile(rms_energy, 5)
|
139 |
-
|
140 |
-
# 5. Speaking rate approximation (zero-crossing rate can help estimate this)
|
141 |
-
zcr = librosa.feature.zero_crossing_rate(audio_data)[0]
|
142 |
-
mean_zcr = np.mean(zcr)
|
143 |
-
|
144 |
-
# 6. Calculate pitch variability relative to the mean (coefficient of variation)
|
145 |
-
# This gives a better measure than raw std dev
|
146 |
-
pitch_cv = (std_pitch / mean_pitch) * 100 if mean_pitch > 0 else 0
|
147 |
-
|
148 |
-
# 7. Tone classification logic using multiple features
|
149 |
-
# Define tone characteristics based on combinations of features
|
150 |
-
tone_class = ""
|
151 |
-
tone_details = []
|
152 |
-
|
153 |
-
# Pitch-based characteristics
|
154 |
-
if pitch_cv < 5:
|
155 |
-
tone_class = "Monotone"
|
156 |
-
tone_details.append("Very little pitch variation - sounds flat and unexpressive")
|
157 |
-
elif pitch_cv < 12:
|
158 |
-
tone_class = "Steady"
|
159 |
-
tone_details.append("Moderate pitch variation - sounds controlled and measured")
|
160 |
-
elif pitch_cv < 20:
|
161 |
-
tone_class = "Expressive"
|
162 |
-
tone_details.append("Good pitch variation - sounds naturally engaging")
|
163 |
-
else:
|
164 |
-
tone_class = "Highly Dynamic"
|
165 |
-
tone_details.append("Strong pitch variation - sounds animated and emphatic")
|
166 |
-
|
167 |
-
# Pitch range classification
|
168 |
-
if mean_pitch > 180:
|
169 |
-
tone_details.append("Higher pitched voice - may convey excitement or tension")
|
170 |
-
elif mean_pitch < 120:
|
171 |
-
tone_details.append("Lower pitched voice - may convey calmness or authority")
|
172 |
-
else:
|
173 |
-
tone_details.append("Mid-range pitch - typically perceived as balanced")
|
174 |
-
|
175 |
-
# Energy/volume characteristics
|
176 |
-
energy_cv = (std_energy / mean_energy) * 100 if mean_energy > 0 else 0
|
177 |
-
if energy_cv < 10:
|
178 |
-
tone_details.append("Consistent volume - sounds controlled and measured")
|
179 |
-
elif energy_cv > 30:
|
180 |
-
tone_details.append("Variable volume - suggests emotional emphasis or expressiveness")
|
181 |
-
|
182 |
-
# Speech rate approximation
|
183 |
-
if mean_zcr > 0.1:
|
184 |
-
tone_details.append("Faster speech rate - may convey urgency or enthusiasm")
|
185 |
-
elif mean_zcr < 0.05:
|
186 |
-
tone_details.append("Slower speech rate - may convey thoughtfulness or hesitation")
|
187 |
-
|
188 |
-
# Generate tone summary and interpretation
|
189 |
-
tone_analysis = f"### Voice Tone Analysis\n\n"
|
190 |
-
tone_analysis += f"**Primary tone quality:** {tone_class}\n\n"
|
191 |
-
tone_analysis += "**Tone characteristics:**\n"
|
192 |
-
for detail in tone_details:
|
193 |
-
tone_analysis += f"- {detail}\n"
|
194 |
-
|
195 |
-
tone_analysis += "\n**Interpretation:**\n"
|
196 |
-
|
197 |
-
# Generate interpretation based on the classified tone
|
198 |
-
if tone_class == "Monotone":
|
199 |
-
tone_analysis += ("A monotone delivery can create distance and reduce engagement. "
|
200 |
-
"Consider adding more vocal variety to sound more engaging and authentic.")
|
201 |
-
elif tone_class == "Steady":
|
202 |
-
tone_analysis += ("Your steady tone suggests reliability and control. "
|
203 |
-
"This can be effective in professional settings or when conveying serious information.")
|
204 |
-
elif tone_class == "Expressive":
|
205 |
-
tone_analysis += ("Your expressive tone helps maintain listener interest and emphasize key points. "
|
206 |
-
"This naturally engaging quality helps convey authenticity and conviction.")
|
207 |
-
else: # Highly Dynamic
|
208 |
-
tone_analysis += ("Your highly dynamic vocal style conveys strong emotion and energy. "
|
209 |
-
"This can be powerful for storytelling and persuasion, though in some contexts "
|
210 |
-
"a more measured approach might be appropriate.")
|
211 |
-
|
212 |
-
return tone_analysis
|
213 |
-
|
214 |
-
except Exception as e:
|
215 |
-
print(f"Error in tone analysis: {e}")
|
216 |
-
return "Tone analysis unavailable due to an error processing the audio."
|
217 |
-
|
218 |
-
def analyze_audio_emotions(audio_file, progress=gr.Progress(), chunk_duration=2):
|
219 |
"""
|
220 |
-
Analyze
|
221 |
-
|
222 |
-
Returns a Plotly figure, summary text, detailed results.
|
223 |
"""
|
224 |
if not load_emotion_model():
|
225 |
-
return None, "Failed to load emotion
|
226 |
-
|
227 |
-
#
|
228 |
-
if audio_file.endswith(
|
229 |
audio_path = audio_file
|
230 |
else:
|
231 |
audio_path = convert_audio_to_wav(audio_file)
|
232 |
if not audio_path:
|
233 |
-
return None, "
|
234 |
-
|
235 |
try:
|
236 |
-
# Load
|
237 |
audio_data, sample_rate = librosa.load(audio_path, sr=16000)
|
238 |
duration = len(audio_data) / sample_rate
|
239 |
-
|
240 |
-
#
|
241 |
chunk_samples = int(chunk_duration * sample_rate)
|
242 |
num_chunks = max(1, int(np.ceil(len(audio_data) / chunk_samples)))
|
243 |
-
|
244 |
all_emotions = []
|
245 |
time_points = []
|
246 |
-
|
247 |
-
# For each chunk, run emotion classification
|
248 |
for i in range(num_chunks):
|
249 |
progress((i + 1) / num_chunks, "Analyzing audio emotions...")
|
250 |
start_idx = i * chunk_samples
|
251 |
end_idx = min(start_idx + chunk_samples, len(audio_data))
|
252 |
chunk = audio_data[start_idx:end_idx]
|
253 |
-
|
254 |
-
# Skip
|
255 |
if len(chunk) < 0.5 * sample_rate:
|
256 |
continue
|
257 |
-
|
258 |
-
#
|
259 |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_chunk:
|
260 |
chunk_path = temp_chunk.name
|
261 |
scipy.io.wavfile.write(chunk_path, sample_rate, (chunk * 32767).astype(np.int16))
|
262 |
-
|
263 |
-
#
|
264 |
-
|
265 |
-
os.unlink(chunk_path)
|
266 |
-
|
267 |
-
all_emotions.append(
|
268 |
time_points.append((start_idx / sample_rate, end_idx / sample_rate))
|
269 |
-
|
270 |
-
#
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
return fig, summary_text, detailed_results
|
282 |
-
|
283 |
except Exception as e:
|
|
|
284 |
import traceback
|
285 |
traceback.print_exc()
|
286 |
-
return None, f"Error analyzing audio: {str(e)}", None
|
287 |
-
|
288 |
-
def smooth_data(data, window_size=3):
|
289 |
-
"""Apply a moving average smoothing to the data"""
|
290 |
-
smoothed = np.convolve(data, np.ones(window_size)/window_size, mode='valid')
|
291 |
-
|
292 |
-
# Add back points that were lost in the convolution
|
293 |
-
padding = len(data) - len(smoothed)
|
294 |
-
if padding > 0:
|
295 |
-
# Add padding at the beginning
|
296 |
-
padding_front = padding // 2
|
297 |
-
padding_back = padding - padding_front
|
298 |
-
|
299 |
-
# Use the first/last values for padding
|
300 |
-
front_padding = [smoothed[0]] * padding_front
|
301 |
-
back_padding = [smoothed[-1]] * padding_back
|
302 |
-
|
303 |
-
smoothed = np.concatenate([front_padding, smoothed, back_padding])
|
304 |
-
|
305 |
-
return smoothed
|
306 |
|
307 |
-
def
|
308 |
"""
|
309 |
-
|
310 |
-
|
311 |
"""
|
|
|
312 |
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
|
313 |
-
|
314 |
-
#
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
"
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
for
|
336 |
-
emotion_data[label].append(scores.get(label, 0.0))
|
337 |
-
|
338 |
-
# Smooth the data
|
339 |
-
for label in emotion_labels:
|
340 |
-
if len(emotion_data[label]) > 2:
|
341 |
-
emotion_data[label] = smooth_data(emotion_data[label])
|
342 |
-
|
343 |
-
# Build the chart
|
344 |
-
fig = go.Figure()
|
345 |
-
|
346 |
-
# Add traces for each emotion
|
347 |
-
for label in emotion_labels:
|
348 |
-
fig.add_trace(
|
349 |
-
go.Scatter(
|
350 |
-
x=timeline_times,
|
351 |
-
y=emotion_data[label],
|
352 |
-
mode='lines',
|
353 |
-
name=label.capitalize(),
|
354 |
-
line=dict(
|
355 |
-
color=colors.get(label, None),
|
356 |
-
width=3,
|
357 |
-
shape='spline', # Curved lines
|
358 |
-
smoothing=1.3
|
359 |
-
),
|
360 |
-
hovertemplate=f'{label.capitalize()}: %{{y:.2f}}<extra></extra>',
|
361 |
-
)
|
362 |
-
)
|
363 |
-
|
364 |
-
# Add markers for dominant emotion at each point
|
365 |
-
dominant_markers_x = []
|
366 |
-
dominant_markers_y = []
|
367 |
-
dominant_markers_text = []
|
368 |
-
dominant_markers_color = []
|
369 |
-
|
370 |
-
for i, time in enumerate(timeline_times):
|
371 |
-
scores = {label: emotion_data[label][i] for label in emotion_labels}
|
372 |
-
dominant = max(scores.items(), key=lambda x: x[1])
|
373 |
-
|
374 |
-
dominant_markers_x.append(time)
|
375 |
-
dominant_markers_y.append(dominant[1])
|
376 |
-
dominant_markers_text.append(f"{dominant[0].capitalize()}: {dominant[1]:.2f}")
|
377 |
-
dominant_markers_color.append(colors.get(dominant[0], "#000000"))
|
378 |
-
|
379 |
-
fig.add_trace(
|
380 |
-
go.Scatter(
|
381 |
-
x=dominant_markers_x,
|
382 |
-
y=dominant_markers_y,
|
383 |
-
mode='markers',
|
384 |
-
marker=dict(
|
385 |
-
size=10,
|
386 |
-
color=dominant_markers_color,
|
387 |
-
line=dict(width=2, color='white')
|
388 |
-
),
|
389 |
-
name="Dominant Emotion",
|
390 |
-
text=dominant_markers_text,
|
391 |
-
hoverinfo="text",
|
392 |
-
hovertemplate='%{text}<extra></extra>'
|
393 |
-
)
|
394 |
-
)
|
395 |
-
|
396 |
-
# Add area chart for better visualization
|
397 |
-
for label in emotion_labels:
|
398 |
-
fig.add_trace(
|
399 |
-
go.Scatter(
|
400 |
-
x=timeline_times,
|
401 |
-
y=emotion_data[label],
|
402 |
-
mode='none',
|
403 |
-
name=f"{label.capitalize()} Area",
|
404 |
-
fill='tozeroy',
|
405 |
-
fillcolor=f"rgba{tuple(list(int(colors.get(label, '#000000').lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) + [0.1])}",
|
406 |
-
showlegend=False,
|
407 |
-
hoverinfo='skip'
|
408 |
-
)
|
409 |
-
)
|
410 |
-
|
411 |
-
# Improve layout
|
412 |
-
fig.update_layout(
|
413 |
-
title={
|
414 |
-
'text': "Voice Emotion Analysis Over Time",
|
415 |
-
'font': {'size': 22, 'family': 'Arial, sans-serif'}
|
416 |
-
},
|
417 |
-
xaxis_title="Time (seconds)",
|
418 |
-
yaxis_title="Confidence Score",
|
419 |
-
yaxis=dict(
|
420 |
-
range=[0, 1.0],
|
421 |
-
showgrid=True,
|
422 |
-
gridcolor='rgba(230, 230, 230, 0.8)'
|
423 |
-
),
|
424 |
-
xaxis=dict(
|
425 |
-
showgrid=True,
|
426 |
-
gridcolor='rgba(230, 230, 230, 0.8)'
|
427 |
-
),
|
428 |
-
plot_bgcolor='white',
|
429 |
-
legend=dict(
|
430 |
-
bordercolor='rgba(0,0,0,0.1)',
|
431 |
-
borderwidth=1,
|
432 |
-
orientation="h",
|
433 |
-
yanchor="bottom",
|
434 |
-
y=1.02,
|
435 |
-
xanchor="right",
|
436 |
-
x=1
|
437 |
-
),
|
438 |
-
hovermode='closest',
|
439 |
-
height=500, # Larger size for better viewing
|
440 |
-
margin=dict(l=10, r=10, t=80, b=50)
|
441 |
-
)
|
442 |
-
|
443 |
-
return fig
|
444 |
-
|
445 |
-
def generate_alternative_chart(all_emotions, time_points):
|
446 |
-
"""
|
447 |
-
Create a stacked area chart to better visualize emotion changes over time
|
448 |
-
"""
|
449 |
-
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
|
450 |
-
|
451 |
-
# Custom color scheme for emotions - more visible/distinct
|
452 |
-
colors = {
|
453 |
-
"angry": "#F44336", # Red
|
454 |
-
"disgust": "#9C27B0", # Purple
|
455 |
-
"fear": "#673AB7", # Deep Purple
|
456 |
-
"happy": "#FFC107", # Amber
|
457 |
-
"neutral": "#607D8B", # Blue Grey
|
458 |
-
"sad": "#2196F3", # Blue
|
459 |
-
"surprise": "#4CAF50" # Green
|
460 |
}
|
461 |
-
|
462 |
-
#
|
463 |
-
timeline_times = [(start + end) / 2 for start, end in time_points]
|
464 |
-
|
465 |
-
# Prepare data structure for all emotions
|
466 |
-
emotion_data = {label: [] for label in emotion_labels}
|
467 |
-
|
468 |
-
# Process emotion scores - ensure all emotions have values
|
469 |
-
for chunk_emotions in all_emotions:
|
470 |
-
# Create a mapping of label to score for this chunk
|
471 |
-
scores = {item["label"]: item["score"] for item in chunk_emotions}
|
472 |
-
|
473 |
-
# Ensure all emotion labels have a value (default to 0.0)
|
474 |
-
for label in emotion_labels:
|
475 |
-
emotion_data[label].append(scores.get(label, 0.0))
|
476 |
-
|
477 |
-
# Create the stacked area chart
|
478 |
-
fig = go.Figure()
|
479 |
-
|
480 |
-
# Add each emotion as a separate trace
|
481 |
for label in emotion_labels:
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
#
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
527 |
|
528 |
-
def generate_emotion_summary(all_emotions):
|
529 |
"""
|
530 |
-
|
|
|
531 |
"""
|
532 |
if not all_emotions:
|
533 |
return "No emotional content detected."
|
534 |
-
|
535 |
emotion_counts = {}
|
536 |
-
emotion_confidence = {}
|
537 |
total_chunks = len(all_emotions)
|
538 |
-
|
539 |
-
for
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
for emotion, count in emotion_counts.items():
|
562 |
-
for tone_group, emotions in TONE_MAPPING.items():
|
563 |
-
if emotion in emotions:
|
564 |
-
tone_group_counts[tone_group] += count
|
565 |
-
|
566 |
-
dominant_tone = max(tone_group_counts, key=tone_group_counts.get)
|
567 |
-
dominant_tone_pct = (tone_group_counts[dominant_tone] / total_chunks) * 100
|
568 |
-
|
569 |
-
# Build summary with markdown formatting
|
570 |
summary = f"### Voice Emotion Analysis Summary\n\n"
|
571 |
-
summary += f"**Dominant emotion:** {dominant_emotion.capitalize()} ({
|
572 |
-
|
573 |
-
if dominant_emotion != most_confident and emotion_confidence[most_confident] > 0.7:
|
574 |
-
summary += f"**Most confident detection:** {most_confident.capitalize()} "
|
575 |
-
summary += f"(avg. confidence: {emotion_confidence[most_confident]:.2f})\n\n"
|
576 |
-
|
577 |
-
summary += f"**Overall tone:** {dominant_tone.capitalize()} ({dominant_tone_pct:.1f}%)\n\n"
|
578 |
summary += f"**Description:** {EMOTION_DESCRIPTIONS.get(dominant_emotion, '')}\n\n"
|
579 |
-
|
580 |
-
# Show emotion distribution as sorted list
|
581 |
summary += "**Emotion distribution:**\n"
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
# Add interpretation based on dominant emotion
|
588 |
-
summary += f"\n**Interpretation:**\n"
|
589 |
-
|
590 |
-
if dominant_emotion == "happy":
|
591 |
-
summary += "The voice conveys primarily positive emotions, suggesting enthusiasm, satisfaction, or joy."
|
592 |
-
elif dominant_emotion == "neutral":
|
593 |
-
summary += "The voice maintains an even emotional tone, suggesting composure or professional delivery."
|
594 |
-
elif dominant_emotion == "sad":
|
595 |
-
summary += "The voice conveys melancholy or disappointment, potentially indicating concern or distress."
|
596 |
-
elif dominant_emotion == "angry":
|
597 |
-
summary += "The voice shows frustration or assertiveness, suggesting strong conviction or displeasure."
|
598 |
-
elif dominant_emotion == "fear":
|
599 |
-
summary += "The voice reveals anxiety or nervousness, suggesting uncertainty or concern."
|
600 |
-
elif dominant_emotion == "disgust":
|
601 |
-
summary += "The voice expresses disapproval or aversion, suggesting rejection of discussed concepts."
|
602 |
-
elif dominant_emotion == "surprise":
|
603 |
-
summary += "The voice shows unexpected reactions, suggesting discovery of new information or astonishment."
|
604 |
-
|
605 |
return summary
|
606 |
|
607 |
-
def
|
608 |
-
"""
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
if len(emotions) > 1:
|
619 |
-
sorted_emotions = sorted(emotions, key=lambda x: x['score'], reverse=True)
|
620 |
-
second_emotion = sorted_emotions[1]["label"].capitalize()
|
621 |
-
second_score = sorted_emotions[1]["score"]
|
622 |
-
secondary = f" ({second_emotion}: {second_score:.2f})"
|
623 |
-
else:
|
624 |
-
secondary = ""
|
625 |
-
|
626 |
-
results_list.append({
|
627 |
-
"Time Range": f"{start_time:.1f}s - {end_time:.1f}s",
|
628 |
-
"Primary Emotion": label.capitalize(),
|
629 |
-
"Confidence": f"{top_emotion['score']:.2f}{secondary}",
|
630 |
-
"Description": EMOTION_DESCRIPTIONS.get(label, "")
|
631 |
-
})
|
632 |
-
return results_list
|
633 |
|
634 |
def process_audio(audio_file, progress=gr.Progress()):
|
635 |
-
"""
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
if
|
641 |
-
return None, None, "
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
return None, None, "Failed to analyze audio emotions.", None, "Tone analysis unavailable."
|
647 |
-
|
648 |
-
# 2) Generate alternative chart
|
649 |
-
# Extract the necessary data from detailed_results to create time_points
|
650 |
-
time_points = []
|
651 |
-
for result in detailed_results:
|
652 |
-
time_range = result["Time Range"]
|
653 |
-
start_time = float(time_range.split("s")[0])
|
654 |
-
end_time = float(time_range.split(" - ")[1].split("s")[0])
|
655 |
-
time_points.append((start_time, end_time))
|
656 |
-
|
657 |
-
# Extract emotion data from detailed_results
|
658 |
-
all_emotions = []
|
659 |
-
for result in detailed_results:
|
660 |
-
# Parse the primary emotion and confidence
|
661 |
-
primary_emotion = result["Primary Emotion"].lower()
|
662 |
-
confidence_str = result["Confidence"].split("(")[0].strip()
|
663 |
-
primary_confidence = float(confidence_str)
|
664 |
-
|
665 |
-
# Create a list of emotion dictionaries for this time point
|
666 |
-
emotions_at_time = [{"label": primary_emotion, "score": primary_confidence}]
|
667 |
-
|
668 |
-
# Check if there's a secondary emotion
|
669 |
-
if "(" in result["Confidence"]:
|
670 |
-
secondary_part = result["Confidence"].split("(")[1].split(")")[0]
|
671 |
-
secondary_emotion = secondary_part.split(":")[0].strip().lower()
|
672 |
-
secondary_confidence = float(secondary_part.split(":")[1].strip())
|
673 |
-
emotions_at_time.append({"label": secondary_emotion, "score": secondary_confidence})
|
674 |
-
|
675 |
-
# Add remaining emotions with zero confidence
|
676 |
-
for emotion in EMOTION_DESCRIPTIONS.keys():
|
677 |
-
if emotion not in [e["label"] for e in emotions_at_time]:
|
678 |
-
emotions_at_time.append({"label": emotion, "score": 0.0})
|
679 |
-
|
680 |
-
all_emotions.append(emotions_at_time)
|
681 |
-
|
682 |
-
# Now we can generate the alternative chart
|
683 |
-
alt_fig = generate_alternative_chart(all_emotions, time_points)
|
684 |
-
|
685 |
-
# 3) Analyze tone
|
686 |
-
tone_analysis = analyze_voice_tone(audio_file)
|
687 |
-
|
688 |
-
return fig, alt_fig, summary_text, detailed_results, tone_analysis
|
689 |
-
|
690 |
-
# Create Gradio interface with improved UI/UX
|
691 |
-
with gr.Blocks(title="Voice Emotion & Tone Analysis System", theme=gr.themes.Soft()) as demo:
|
692 |
gr.Markdown("""
|
693 |
-
# ποΈ Voice Emotion
|
694 |
-
|
695 |
-
This app
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
""")
|
701 |
-
|
702 |
with gr.Tabs():
|
703 |
-
# Tab 1: Upload
|
704 |
with gr.TabItem("Upload Audio"):
|
705 |
with gr.Row():
|
706 |
with gr.Column(scale=1):
|
707 |
audio_input = gr.Audio(
|
708 |
label="Upload Audio File",
|
709 |
type="filepath",
|
710 |
-
sources=["upload"]
|
711 |
-
elem_id="audio_upload"
|
712 |
)
|
713 |
-
process_btn = gr.Button("Analyze Voice
|
714 |
-
gr.Markdown("""
|
715 |
-
**Supports:** MP3, WAV, M4A, and most audio formats
|
716 |
-
**For best results:** Use a clear voice recording with minimal background noise
|
717 |
-
""")
|
718 |
with gr.Column(scale=2):
|
719 |
-
|
720 |
-
with gr.TabItem("Line Chart"):
|
721 |
-
emotion_timeline = gr.Plot(label="Emotion Timeline",
|
722 |
-
elem_id="emotion_plot",
|
723 |
-
container=True)
|
724 |
-
with gr.TabItem("Area Chart"):
|
725 |
-
emotion_area_chart = gr.Plot(label="Emotion Distribution",
|
726 |
-
elem_id="emotion_area_plot",
|
727 |
-
container=True)
|
728 |
with gr.Row():
|
729 |
-
|
730 |
-
|
731 |
-
with gr.Column():
|
732 |
-
tone_analysis_output = gr.Markdown(label="Tone Analysis")
|
733 |
with gr.Row():
|
734 |
emotion_results = gr.DataFrame(
|
735 |
-
headers=["Time Range", "
|
736 |
label="Detailed Emotion Analysis"
|
737 |
)
|
738 |
-
|
739 |
process_btn.click(
|
740 |
fn=process_audio,
|
741 |
inputs=[audio_input],
|
742 |
-
outputs=[emotion_timeline,
|
743 |
)
|
744 |
-
|
745 |
-
# Tab 2: Record
|
746 |
with gr.TabItem("Record Voice"):
|
747 |
with gr.Row():
|
748 |
with gr.Column(scale=1):
|
749 |
record_input = gr.Audio(
|
750 |
label="Record Your Voice",
|
751 |
sources=["microphone"],
|
752 |
-
type="filepath"
|
753 |
-
elem_id="record_audio"
|
754 |
)
|
755 |
-
analyze_btn = gr.Button("Analyze Recording"
|
756 |
-
gr.Markdown("""
|
757 |
-
**Tips:**
|
758 |
-
- Speak clearly and at a normal pace
|
759 |
-
- Record at least 10-15 seconds for more accurate analysis
|
760 |
-
- Try different emotional tones to see how they're detected
|
761 |
-
""")
|
762 |
with gr.Column(scale=2):
|
763 |
-
|
764 |
-
with gr.TabItem("Line Chart"):
|
765 |
-
rec_emotion_timeline = gr.Plot(label="Emotion Timeline",
|
766 |
-
elem_id="record_emotion_plot",
|
767 |
-
container=True)
|
768 |
-
with gr.TabItem("Area Chart"):
|
769 |
-
rec_emotion_area_chart = gr.Plot(label="Emotion Distribution",
|
770 |
-
elem_id="record_emotion_area_plot",
|
771 |
-
container=True)
|
772 |
with gr.Row():
|
773 |
-
|
774 |
-
|
775 |
-
with gr.Column():
|
776 |
-
rec_tone_analysis_output = gr.Markdown(label="Tone Analysis")
|
777 |
with gr.Row():
|
778 |
rec_emotion_results = gr.DataFrame(
|
779 |
-
headers=["Time Range", "
|
780 |
label="Detailed Emotion Analysis"
|
781 |
)
|
782 |
-
|
783 |
analyze_btn.click(
|
784 |
fn=process_audio,
|
785 |
inputs=[record_input],
|
786 |
-
outputs=[rec_emotion_timeline,
|
787 |
)
|
788 |
-
|
789 |
-
# Tab 3: About & Help
|
790 |
-
with gr.TabItem("About & Help"):
|
791 |
-
gr.Markdown("""
|
792 |
-
## About This System
|
793 |
-
|
794 |
-
This voice emotion & tone analysis system uses state-of-the-art deep learning models to detect emotions and analyze vocal characteristics. The system is built on HuBERT (Hidden Unit BERT) architecture trained on speech emotion recognition tasks.
|
795 |
-
|
796 |
-
### How It Works
|
797 |
-
|
798 |
-
1. **Audio Processing**: Your audio is processed in short segments (chunks) to capture emotion variations over time.
|
799 |
-
2. **Emotion Classification**: Each segment is analyzed by a neural network to detect emotional patterns.
|
800 |
-
3. **Tone Analysis**: Acoustic features like pitch, energy, and rhythm are analyzed to describe voice tone characteristics.
|
801 |
-
|
802 |
-
### Emotion Categories
|
803 |
-
|
804 |
-
The system detects seven standard emotions:
|
805 |
-
|
806 |
-
- **Angry**: Voice shows irritation, hostility, or aggression. Tone may be harsh, loud, or intense.
|
807 |
-
- **Disgust**: Voice expresses revulsion or strong disapproval. Tone may sound repulsed or contemptuous.
|
808 |
-
- **Fear**: Voice reveals anxiety, worry, or dread. Tone may be shaky, hesitant, or tense.
|
809 |
-
- **Happy**: Voice conveys joy, pleasure, or positive emotions. Tone is often bright, energetic, and uplifted.
|
810 |
-
- **Neutral**: Voice lacks strong emotional signals. Tone is even, moderate, and relatively flat.
|
811 |
-
- **Sad**: Voice expresses sorrow, unhappiness, or melancholy. Tone may be quiet, heavy, or subdued.
|
812 |
-
- **Surprise**: Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic.
|
813 |
-
|
814 |
-
### Tips for Best Results
|
815 |
-
|
816 |
-
- Use clear audio with minimal background noise
|
817 |
-
- Speak naturally at a comfortable volume
|
818 |
-
- Record at least 10-15 seconds of speech
|
819 |
-
- For tone analysis, longer recordings (30+ seconds) provide more accurate results
|
820 |
-
|
821 |
-
### Privacy Notice
|
822 |
-
|
823 |
-
All audio processing happens on your device. No audio recordings or analysis results are stored or transmitted to external servers.
|
824 |
-
""")
|
825 |
-
|
826 |
gr.Markdown("""
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
""")
|
836 |
|
837 |
-
|
838 |
-
print("
|
839 |
-
|
840 |
-
|
841 |
-
|
|
|
842 |
|
843 |
-
# Launch the demo
|
844 |
if __name__ == "__main__":
|
|
|
845 |
demo.launch()
|
|
|
1 |
+
# voice_emotion_classification.py
|
2 |
+
|
3 |
import os
|
4 |
import subprocess
|
5 |
import sys
|
|
|
20 |
print(f"Failed to install {package_spec}: {e}")
|
21 |
raise
|
22 |
|
23 |
+
# Required packages (you may add version pins if necessary)
|
24 |
required_packages = {
|
25 |
"gradio": None,
|
26 |
"torch": None,
|
|
|
29 |
"librosa": None,
|
30 |
"scipy": None,
|
31 |
"matplotlib": None,
|
32 |
+
"pydub": None
|
|
|
33 |
}
|
34 |
|
35 |
installed_packages = {pkg.key for pkg in pkg_resources.working_set}
|
|
|
37 |
if package not in installed_packages:
|
38 |
install_package(package, version)
|
39 |
|
40 |
+
# Now import all necessary packages
|
41 |
import gradio as gr
|
42 |
import torch
|
43 |
import torchaudio
|
44 |
import librosa
|
45 |
+
import matplotlib.pyplot as plt
|
46 |
+
from matplotlib.colors import LinearSegmentedColormap
|
47 |
from pydub import AudioSegment
|
48 |
import scipy
|
49 |
import io
|
50 |
from transformers import pipeline, AutoFeatureExtractor, AutoModelForAudioClassification
|
51 |
+
from pathlib import Path
|
52 |
+
import matplotlib
|
53 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
54 |
|
55 |
# Define emotion labels, tone mapping, and descriptions
|
56 |
EMOTION_DESCRIPTIONS = {
|
|
|
63 |
"surprise": "Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic."
|
64 |
}
|
65 |
|
66 |
+
# Here we map emotion to a generalized tone (for example, negative or positive)
|
67 |
TONE_MAPPING = {
|
68 |
"positive": ["happy", "surprise"],
|
69 |
"neutral": ["neutral"],
|
70 |
"negative": ["angry", "sad", "fear", "disgust"]
|
71 |
}
|
72 |
|
73 |
+
# Some Hugging Face models return short labels (e.g., "hap", "ang", etc.).
|
74 |
+
# This mapping will ensure they're translated into our full canonical labels.
|
75 |
+
MODEL_TO_EMOTION_MAP = {
|
76 |
+
"hap": "happy",
|
77 |
+
"ang": "angry",
|
78 |
+
"sad": "sad",
|
79 |
+
"dis": "disgust",
|
80 |
+
"fea": "fear",
|
81 |
+
"neu": "neutral",
|
82 |
+
"sur": "surprise"
|
83 |
+
}
|
84 |
+
|
85 |
# Global variable for the emotion classifier
|
86 |
audio_emotion_classifier = None
|
87 |
|
88 |
def load_emotion_model():
|
89 |
+
"""Load the emotion classification model once and cache it."""
|
90 |
global audio_emotion_classifier
|
91 |
if audio_emotion_classifier is None:
|
92 |
try:
|
93 |
print("Loading emotion classification model...")
|
94 |
+
# Using the Hugging Face pipeline with the new model that classifies speech emotion
|
95 |
model_name = "superb/hubert-large-superb-er"
|
96 |
audio_emotion_classifier = pipeline("audio-classification", model=model_name)
|
97 |
print("Emotion classification model loaded successfully")
|
|
|
102 |
return True
|
103 |
|
104 |
def convert_audio_to_wav(audio_file):
|
105 |
+
"""Convert the uploaded audio to WAV format."""
|
106 |
try:
|
107 |
audio = AudioSegment.from_file(audio_file)
|
108 |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
|
|
|
113 |
print(f"Error converting audio: {e}")
|
114 |
return None
|
115 |
|
116 |
+
def analyze_audio_emotions(audio_file, progress=gr.Progress(), chunk_duration=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
"""
|
118 |
+
Analyze emotions in an audio file by processing it in chunks.
|
119 |
+
Returns a visualization, processed audio path, summary, and detailed results.
|
|
|
120 |
"""
|
121 |
if not load_emotion_model():
|
122 |
+
return None, "Failed to load emotion classification model. Please check console for details."
|
123 |
+
|
124 |
+
# If the file is already a WAV, use it directly; else convert it.
|
125 |
+
if audio_file.endswith('.wav'):
|
126 |
audio_path = audio_file
|
127 |
else:
|
128 |
audio_path = convert_audio_to_wav(audio_file)
|
129 |
if not audio_path:
|
130 |
+
return None, "Failed to process audio file. Unsupported format or corrupted file."
|
131 |
+
|
132 |
try:
|
133 |
+
# Load the audio using librosa
|
134 |
audio_data, sample_rate = librosa.load(audio_path, sr=16000)
|
135 |
duration = len(audio_data) / sample_rate
|
136 |
+
|
137 |
+
# Process in chunks for long files
|
138 |
chunk_samples = int(chunk_duration * sample_rate)
|
139 |
num_chunks = max(1, int(np.ceil(len(audio_data) / chunk_samples)))
|
140 |
+
|
141 |
all_emotions = []
|
142 |
time_points = []
|
143 |
+
|
|
|
144 |
for i in range(num_chunks):
|
145 |
progress((i + 1) / num_chunks, "Analyzing audio emotions...")
|
146 |
start_idx = i * chunk_samples
|
147 |
end_idx = min(start_idx + chunk_samples, len(audio_data))
|
148 |
chunk = audio_data[start_idx:end_idx]
|
149 |
+
|
150 |
+
# Skip too-short chunks (<0.5 seconds)
|
151 |
if len(chunk) < 0.5 * sample_rate:
|
152 |
continue
|
153 |
+
|
154 |
+
# Create a temporary file for this audio chunk
|
155 |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_chunk:
|
156 |
chunk_path = temp_chunk.name
|
157 |
scipy.io.wavfile.write(chunk_path, sample_rate, (chunk * 32767).astype(np.int16))
|
158 |
+
|
159 |
+
# Get emotion classification results on this chunk
|
160 |
+
results = audio_emotion_classifier(chunk_path)
|
161 |
+
os.unlink(chunk_path) # Remove the temporary file
|
162 |
+
|
163 |
+
all_emotions.append(results)
|
164 |
time_points.append((start_idx / sample_rate, end_idx / sample_rate))
|
165 |
+
|
166 |
+
# Generate visualization and summary
|
167 |
+
fig, detailed_results = generate_emotion_timeline(all_emotions, time_points, duration)
|
168 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_img:
|
169 |
+
img_path = temp_img.name
|
170 |
+
fig.savefig(img_path, dpi=100, bbox_inches='tight')
|
171 |
+
plt.close(fig)
|
172 |
+
|
173 |
+
summary = generate_emotion_summary(all_emotions, time_points)
|
174 |
+
return img_path, audio_path, summary, detailed_results
|
175 |
+
|
|
|
|
|
|
|
176 |
except Exception as e:
|
177 |
+
print(f"Error analyzing audio: {e}")
|
178 |
import traceback
|
179 |
traceback.print_exc()
|
180 |
+
return None, None, f"Error analyzing audio: {str(e)}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
def generate_emotion_timeline(all_emotions, time_points, duration):
|
183 |
"""
|
184 |
+
Generate a bar chart visualization of emotion percentages with tone analysis.
|
185 |
+
Returns the matplotlib figure and a list of detailed results.
|
186 |
"""
|
187 |
+
# All possible emotion labels from our dictionary
|
188 |
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
|
189 |
+
|
190 |
+
# We'll accumulate counts based on our canonical labels (e.g., "happy", "angry").
|
191 |
+
emotion_counts = {}
|
192 |
+
|
193 |
+
for emotions in all_emotions:
|
194 |
+
if not emotions:
|
195 |
+
continue
|
196 |
+
|
197 |
+
# The pipeline returns items like {"label": "Hap", "score": 0.95}, etc.
|
198 |
+
top_emotion = max(emotions, key=lambda x: x['score'])
|
199 |
+
|
200 |
+
# Normalize the label from the model to a canonical label used in EMOTION_DESCRIPTIONS
|
201 |
+
raw_label = top_emotion['label'].lower().strip() # e.g., "hap", "ang", ...
|
202 |
+
canonical_label = MODEL_TO_EMOTION_MAP.get(raw_label, raw_label)
|
203 |
+
# If there's no mapping, we leave it as raw_label.
|
204 |
+
# But typically, it should be one of "happy", "angry", "disgust", "fear", "sad", "neutral", "surprise".
|
205 |
+
|
206 |
+
# Count how many times each canonical label appears
|
207 |
+
emotion_counts[canonical_label] = emotion_counts.get(canonical_label, 0) + 1
|
208 |
+
|
209 |
+
total_chunks = len(all_emotions)
|
210 |
+
emotion_percentages = {
|
211 |
+
e: (count / total_chunks * 100) for e, count in emotion_counts.items()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
}
|
213 |
+
|
214 |
+
# Create empty percentages for emotions that didn't appear
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
for label in emotion_labels:
|
216 |
+
if label not in emotion_percentages:
|
217 |
+
emotion_percentages[label] = 0.0
|
218 |
+
|
219 |
+
# Sort emotions by percentage
|
220 |
+
sorted_emotions = sorted(emotion_percentages.items(), key=lambda x: x[1], reverse=True)
|
221 |
+
|
222 |
+
# Create the bar chart with subplots: one for emotions and one for tone
|
223 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10), height_ratios=[3, 1], gridspec_kw={'hspace': 0.3})
|
224 |
+
|
225 |
+
# Capitalize each label for a nice display
|
226 |
+
emotions = [item[0].capitalize() for item in sorted_emotions]
|
227 |
+
percentages = [item[1] for item in sorted_emotions]
|
228 |
+
|
229 |
+
# Custom colors for emotions (enough for 7 emotions)
|
230 |
+
colors = ['red', 'brown', 'purple', 'green', 'gray', 'blue', 'orange']
|
231 |
+
if len(emotions) <= len(colors):
|
232 |
+
bar_colors = colors[:len(emotions)]
|
233 |
+
else:
|
234 |
+
# fallback if there's more emotions than colors
|
235 |
+
bar_colors = colors + ['#666666'] * (len(emotions) - len(colors))
|
236 |
+
|
237 |
+
# Plot emotion bars
|
238 |
+
bars = ax1.bar(emotions, percentages, color=bar_colors)
|
239 |
+
|
240 |
+
# Add percentage labels on top of each bar
|
241 |
+
for bar in bars:
|
242 |
+
height = bar.get_height()
|
243 |
+
ax1.annotate(f'{height:.1f}%',
|
244 |
+
xy=(bar.get_x() + bar.get_width() / 2, height),
|
245 |
+
xytext=(0, 3), # 3 points vertical offset
|
246 |
+
textcoords="offset points",
|
247 |
+
ha='center', va='bottom')
|
248 |
+
|
249 |
+
ax1.set_ylim(0, 100) # Fixed 100% scale
|
250 |
+
ax1.set_ylabel('Percentage (%)')
|
251 |
+
ax1.set_title('Emotion Distribution')
|
252 |
+
ax1.grid(axis='y', linestyle='--', alpha=0.7)
|
253 |
+
|
254 |
+
# Calculate tone percentages based on the canonical labels we found
|
255 |
+
tone_percentages = {"positive": 0, "neutral": 0, "negative": 0}
|
256 |
+
|
257 |
+
for emotion_label, percentage in emotion_percentages.items():
|
258 |
+
for tone, emotions_list in TONE_MAPPING.items():
|
259 |
+
if emotion_label in emotions_list:
|
260 |
+
tone_percentages[tone] += percentage
|
261 |
+
|
262 |
+
# Plot tone bars
|
263 |
+
tones = list(tone_percentages.keys())
|
264 |
+
tone_values = list(tone_percentages.values())
|
265 |
+
tone_colors = {'positive': 'green', 'neutral': 'gray', 'negative': 'red'}
|
266 |
+
tone_bars = ax2.bar(tones, tone_values, color=[tone_colors[t] for t in tones])
|
267 |
+
|
268 |
+
# Add percentage labels on tone bars
|
269 |
+
for bar in tone_bars:
|
270 |
+
height = bar.get_height()
|
271 |
+
if height > 0: # Only add label if there's a visible bar
|
272 |
+
ax2.annotate(f'{height:.1f}%',
|
273 |
+
xy=(bar.get_x() + bar.get_width() / 2, height),
|
274 |
+
xytext=(0, 3),
|
275 |
+
textcoords="offset points",
|
276 |
+
ha='center', va='bottom')
|
277 |
+
|
278 |
+
ax2.set_ylim(0, 100)
|
279 |
+
ax2.set_ylabel('Percentage (%)')
|
280 |
+
ax2.set_title('Tone Analysis')
|
281 |
+
ax2.grid(axis='y', linestyle='--', alpha=0.7)
|
282 |
+
|
283 |
+
plt.tight_layout()
|
284 |
+
|
285 |
+
# Generate a more detailed time-segmented result
|
286 |
+
detailed_results = []
|
287 |
+
for idx, (emotions, (start_time, end_time)) in enumerate(zip(all_emotions, time_points)):
|
288 |
+
if not emotions:
|
289 |
+
continue
|
290 |
+
|
291 |
+
top_emotion = max(emotions, key=lambda x: x['score'])
|
292 |
+
raw_label = top_emotion['label'].lower().strip()
|
293 |
+
canonical_label = MODEL_TO_EMOTION_MAP.get(raw_label, raw_label)
|
294 |
+
|
295 |
+
# Determine the tone for this emotion
|
296 |
+
# (based on canonical_label rather than the raw model label)
|
297 |
+
tone = next((t for t, e_list in TONE_MAPPING.items() if canonical_label in e_list), "unknown")
|
298 |
+
|
299 |
+
detailed_results.append({
|
300 |
+
'Time Range': f"{start_time:.1f}s - {end_time:.1f}s",
|
301 |
+
'Emotion': canonical_label,
|
302 |
+
'Tone': tone.capitalize(),
|
303 |
+
'Confidence': f"{top_emotion['score']:.2f}",
|
304 |
+
'Description': EMOTION_DESCRIPTIONS.get(canonical_label, "")
|
305 |
+
})
|
306 |
+
|
307 |
+
return fig, detailed_results
|
308 |
|
309 |
+
def generate_emotion_summary(all_emotions, time_points):
|
310 |
"""
|
311 |
+
Create a summary text from the emotion analysis.
|
312 |
+
Counts occurrences and computes percentages of the dominant emotion.
|
313 |
"""
|
314 |
if not all_emotions:
|
315 |
return "No emotional content detected."
|
316 |
+
|
317 |
emotion_counts = {}
|
|
|
318 |
total_chunks = len(all_emotions)
|
319 |
+
|
320 |
+
for emotions in all_emotions:
|
321 |
+
if not emotions:
|
322 |
+
continue
|
323 |
+
top_emotion = max(emotions, key=lambda x: x['score'])
|
324 |
+
|
325 |
+
# Normalize the label
|
326 |
+
raw_label = top_emotion['label'].lower().strip()
|
327 |
+
canonical_label = MODEL_TO_EMOTION_MAP.get(raw_label, raw_label)
|
328 |
+
|
329 |
+
emotion_counts[canonical_label] = emotion_counts.get(canonical_label, 0) + 1
|
330 |
+
|
331 |
+
emotion_percentages = {
|
332 |
+
e: (count / total_chunks * 100)
|
333 |
+
for e, count in emotion_counts.items()
|
334 |
+
}
|
335 |
+
|
336 |
+
if not emotion_percentages:
|
337 |
+
return "No emotional content detected."
|
338 |
+
|
339 |
+
# Find the dominant emotion (highest percentage)
|
340 |
+
dominant_emotion = max(emotion_percentages.items(), key=lambda x: x[1])[0]
|
341 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
summary = f"### Voice Emotion Analysis Summary\n\n"
|
343 |
+
summary += f"**Dominant emotion:** {dominant_emotion.capitalize()} ({emotion_percentages[dominant_emotion]:.1f}%)\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
summary += f"**Description:** {EMOTION_DESCRIPTIONS.get(dominant_emotion, '')}\n\n"
|
|
|
|
|
345 |
summary += "**Emotion distribution:**\n"
|
346 |
+
|
347 |
+
for emotion, percentage in sorted(emotion_percentages.items(), key=lambda x: x[1], reverse=True):
|
348 |
+
summary += f"- {emotion.capitalize()}: {percentage:.1f}%\n"
|
349 |
+
|
350 |
+
summary += "\n**Interpretation:** The voice predominantly expresses {0} emotion".format(dominant_emotion)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
return summary
|
352 |
|
353 |
+
def record_audio(audio):
|
354 |
+
"""Save recorded audio and analyze emotions."""
|
355 |
+
try:
|
356 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
|
357 |
+
audio_path = temp_file.name
|
358 |
+
with open(audio_path, 'wb') as f:
|
359 |
+
f.write(audio)
|
360 |
+
return audio_path
|
361 |
+
except Exception as e:
|
362 |
+
print(f"Error saving recorded audio: {e}")
|
363 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
def process_audio(audio_file, progress=gr.Progress()):
|
366 |
+
"""Process the audio file and analyze emotions."""
|
367 |
+
if audio_file is None:
|
368 |
+
return None, None, "No audio file provided.", None
|
369 |
+
|
370 |
+
img_path, processed_audio, summary, results = analyze_audio_emotions(audio_file, progress)
|
371 |
+
if img_path is None:
|
372 |
+
return None, None, "Failed to analyze audio emotions.", None
|
373 |
+
return img_path, processed_audio, summary, results
|
374 |
+
|
375 |
+
# Create Gradio interface
|
376 |
+
with gr.Blocks(title="Voice Emotion Analysis System") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
gr.Markdown("""
|
378 |
+
# ποΈ Voice Emotion Analysis System
|
379 |
+
|
380 |
+
This app analyzes the emotional content of voice recordings.
|
381 |
+
|
382 |
+
It detects emotions including:
|
383 |
+
|
384 |
+
* π‘ **Anger**
|
385 |
+
* π€’ **Disgust**
|
386 |
+
* π¨ **Fear**
|
387 |
+
* π **Happiness**
|
388 |
+
* π **Neutral**
|
389 |
+
* π’ **Sadness**
|
390 |
+
* π² **Surprise**
|
391 |
+
|
392 |
+
And provides a detailed analysis and timeline.
|
393 |
""")
|
394 |
+
|
395 |
with gr.Tabs():
|
|
|
396 |
with gr.TabItem("Upload Audio"):
|
397 |
with gr.Row():
|
398 |
with gr.Column(scale=1):
|
399 |
audio_input = gr.Audio(
|
400 |
label="Upload Audio File",
|
401 |
type="filepath",
|
402 |
+
sources=["upload"]
|
|
|
403 |
)
|
404 |
+
process_btn = gr.Button("Analyze Voice Emotions")
|
|
|
|
|
|
|
|
|
405 |
with gr.Column(scale=2):
|
406 |
+
emotion_timeline = gr.Image(label="Emotion Timeline", show_label=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
with gr.Row():
|
408 |
+
audio_playback = gr.Audio(label="Processed Audio", show_label=True)
|
409 |
+
emotion_summary = gr.Markdown(label="Emotion Summary")
|
|
|
|
|
410 |
with gr.Row():
|
411 |
emotion_results = gr.DataFrame(
|
412 |
+
headers=["Time Range", "Emotion", "Tone", "Confidence", "Description"],
|
413 |
label="Detailed Emotion Analysis"
|
414 |
)
|
|
|
415 |
process_btn.click(
|
416 |
fn=process_audio,
|
417 |
inputs=[audio_input],
|
418 |
+
outputs=[emotion_timeline, audio_playback, emotion_summary, emotion_results]
|
419 |
)
|
420 |
+
|
|
|
421 |
with gr.TabItem("Record Voice"):
|
422 |
with gr.Row():
|
423 |
with gr.Column(scale=1):
|
424 |
record_input = gr.Audio(
|
425 |
label="Record Your Voice",
|
426 |
sources=["microphone"],
|
427 |
+
type="filepath"
|
|
|
428 |
)
|
429 |
+
analyze_btn = gr.Button("Analyze Recording")
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
with gr.Column(scale=2):
|
431 |
+
rec_emotion_timeline = gr.Image(label="Emotion Timeline", show_label=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
with gr.Row():
|
433 |
+
rec_audio_playback = gr.Audio(label="Processed Audio", show_label=True)
|
434 |
+
rec_emotion_summary = gr.Markdown(label="Emotion Summary")
|
|
|
|
|
435 |
with gr.Row():
|
436 |
rec_emotion_results = gr.DataFrame(
|
437 |
+
headers=["Time Range", "Emotion", "Tone", "Confidence", "Description"],
|
438 |
label="Detailed Emotion Analysis"
|
439 |
)
|
|
|
440 |
analyze_btn.click(
|
441 |
fn=process_audio,
|
442 |
inputs=[record_input],
|
443 |
+
outputs=[rec_emotion_timeline, rec_audio_playback, rec_emotion_summary, rec_emotion_results]
|
444 |
)
|
445 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
gr.Markdown("""
|
447 |
+
### How to Use
|
448 |
+
|
449 |
+
1. **Upload Audio Tab:** Upload an audio file and click "Analyze Voice Emotions".
|
450 |
+
2. **Record Voice Tab:** Record your voice and click "Analyze Recording".
|
451 |
+
|
452 |
+
**Tips:**
|
453 |
+
- Use clear recordings with minimal background noise.
|
454 |
+
- Longer recordings yield more consistent results.
|
455 |
""")
|
456 |
|
457 |
+
def initialize_app():
|
458 |
+
print("Initializing voice emotion analysis app...")
|
459 |
+
if load_emotion_model():
|
460 |
+
print("Emotion model loaded successfully!")
|
461 |
+
else:
|
462 |
+
print("Failed to load emotion model.")
|
463 |
|
|
|
464 |
if __name__ == "__main__":
|
465 |
+
initialize_app()
|
466 |
demo.launch()
|