Natwar's picture
Update app.py
17cfe59 verified
raw
history blame
16.4 kB
# Install required packages
import os
import subprocess
import sys
import importlib
import pkg_resources
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
def ensure_package(package, version=None):
try:
if version:
pkg_resources.require(f"{package}=={version}")
else:
importlib.import_module(package)
print(f"{package} is already installed with the correct version.")
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
print(f"Package requirement failed: {e}")
install_package(package, version)
# Check environment and install dependencies
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
print("Setting up environment...")
# Install core dependencies
ensure_package("numpy", "1.23.5")
ensure_package("protobuf", "3.20.3")
ensure_package("tensorflow", "2.10.0")
ensure_package("opencv-python-headless", "4.7.0.72") # Fix for cv2 error
ensure_package("deepface", "0.0.79")
ensure_package("gradio", "3.50.2")
# Install additional required packages
for pkg in ["matplotlib", "pillow", "pandas"]:
ensure_package(pkg)
# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import pandas as pd
import shutil
# Google Drive integration (for Colab users)
if 'google.colab' in sys.modules:
from google.colab import drive
drive.mount('/content/drive')
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
img1_path = os.path.join(temp_dir, "image1.jpg")
img2_path = os.path.join(temp_dir, "image2.jpg")
if isinstance(img1, np.ndarray):
Image.fromarray(img1).save(img1_path)
else:
img1.save(img1_path)
if isinstance(img2, np.ndarray):
Image.fromarray(img2).save(img2_path)
else:
img2.save(img2_path)
try:
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
img1_display = cv2.imread(img1_path)
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
img2_display = cv2.imread(img2_path)
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
ax[0].imshow(img1_display)
ax[0].set_title("Image 1")
ax[0].axis("off")
ax[1].imshow(img2_display)
ax[1].set_title("Image 2")
ax[1].axis("off")
verification_result = "βœ… FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
confidence = round((1 - result["distance"]) * 100, 2)
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
fontsize=16, fontweight='bold',
color='green' if result["verified"] else 'red')
plt.tight_layout()
os.remove(img1_path)
os.remove(img2_path)
os.rmdir(temp_dir)
return fig, json.dumps(result, indent=2)
except Exception as e:
if os.path.exists(img1_path):
os.remove(img1_path)
if os.path.exists(img2_path):
os.remove(img2_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in one or both images. Please try different images."
return None, error_msg
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
query_path = os.path.join(temp_dir, "query.jpg")
if isinstance(query_img, np.ndarray):
Image.fromarray(query_img).save(query_path)
else:
query_img.save(query_path)
# Handle cloud storage paths and uploaded files
if isinstance(db_folder, str):
# Check if it's a Google Drive path
if db_folder.startswith("/content/drive"):
db_path = db_folder
else:
# Handle regular path
db_path = os.path.abspath(db_folder)
if not os.path.exists(db_path):
return None, "Invalid database path - directory does not exist"
else:
# Handle uploaded files
db_path = os.path.join(temp_dir, "db")
os.makedirs(db_path, exist_ok=True)
for i, file in enumerate(db_folder):
orig_filename = file.orig_name
file_ext = os.path.splitext(orig_filename)[1]
new_filename = f"image_{i}{file_ext}"
shutil.copy(file.name, os.path.join(db_path, new_filename))
try:
dfs = DeepFace.find(
img_path=query_path,
db_path=db_path,
model_name=model,
distance_metric="cosine",
threshold=threshold,
silent=True
)
if isinstance(dfs, list):
if len(dfs) == 0:
return None, "No matching faces found in the database."
df = dfs[0]
else:
df = dfs
if df.empty:
return None, "No matching faces found in the database."
df = df.sort_values(by=["distance"])
num_matches = min(4, len(df))
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
query_display = cv2.imread(query_path)
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
axes[0].imshow(query_display)
axes[0].set_title("Query Image")
axes[0].axis("off")
valid_matches = 0
for i in range(num_matches):
if i >= len(df):
break
match_path = df.iloc[i]["identity"]
if not os.path.exists(match_path):
continue
distance = df.iloc[i]["distance"]
confidence = round((1 - distance) * 100, 2)
try:
match_img = cv2.imread(match_path)
if match_img is None:
continue
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
axes[valid_matches+1].imshow(match_img)
axes[valid_matches+1].set_title(f"Match #{valid_matches+1}\nConfidence: {confidence}%")
axes[valid_matches+1].axis("off")
valid_matches += 1
except:
continue
# Hide empty axes
for j in range(valid_matches+1, num_matches+1):
axes[j].axis("off")
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
plt.tight_layout()
results = df[["identity", "distance"]].copy()
results["confidence"] = (1 - results["distance"]) * 100
results["confidence"] = results["confidence"].round(2)
results = results.rename(columns={"identity": "Image Path"})
os.remove(query_path)
if not isinstance(db_folder, str):
shutil.rmtree(db_path)
return fig, results.to_dict('records')
except Exception as e:
if os.path.exists(query_path):
os.remove(query_path)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the query image. Please try a different image."
elif "No such file or directory" in str(e):
error_msg = "Invalid database path or corrupted image files"
return None, error_msg
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
temp_dir = tempfile.mkdtemp()
img_path = os.path.join(temp_dir, "analyze.jpg")
if isinstance(img, np.ndarray):
Image.fromarray(img).save(img_path)
else:
img.save(img_path)
try:
results = DeepFace.analyze(
img_path=img_path,
actions=actions,
enforce_detection=True,
detector_backend='opencv'
)
if isinstance(results, list):
num_faces = len(results)
else:
num_faces = 1
results = [results]
fig = plt.figure(figsize=(14, 7))
img_display = cv2.imread(img_path)
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
main_ax.imshow(img_display)
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
main_ax.axis('off')
for i, face_result in enumerate(results):
if i >= 4:
break
age = face_result.get('age', 'N/A')
gender = face_result.get('dominant_gender', 'N/A')
race = face_result.get('dominant_race', 'N/A')
emotion = face_result.get('dominant_emotion', 'N/A')
gender_conf = 'N/A'
if 'gender' in face_result and isinstance(face_result['gender'], dict):
for g, conf in face_result['gender'].items():
if g.lower() == gender.lower():
gender_conf = f"{conf:.1f}%"
break
race_conf = 'N/A'
if 'race' in face_result and isinstance(face_result['race'], dict):
for r, conf in face_result['race'].items():
if r.lower() == race.lower():
race_conf = f"{conf:.1f}%"
break
emotion_conf = 'N/A'
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
for e, conf in face_result['emotion'].items():
if e.lower() == emotion.lower():
emotion_conf = f"{conf:.1f}%"
break
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
text = (
f"Face #{i+1}\n\n"
f"Age: {age}\n\n"
f"Gender: {gender} ({gender_conf})\n\n"
f"Race: {race} ({race_conf})\n\n"
f"Emotion: {emotion} ({emotion_conf})"
)
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
ax.axis('off')
plt.tight_layout()
os.remove(img_path)
os.rmdir(temp_dir)
formatted_results = []
for i, res in enumerate(results[:8]):
face_data = {
"face_number": i+1,
"age": res.get("age", "N/A"),
"gender": {
"dominant": res.get("dominant_gender", "N/A"),
"confidence": res.get("gender", {})
},
"race": {
"dominant": res.get("dominant_race", "N/A"),
"confidence": res.get("race", {})
},
"emotion": {
"dominant": res.get("dominant_emotion", "N/A"),
"confidence": res.get("emotion", {})
}
}
formatted_results.append(face_data)
return fig, formatted_results
except Exception as e:
if os.path.exists(img_path):
os.remove(img_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the image. Please try a different image."
return None, error_msg
# Create Gradio interface
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ” Complete Face Recognition Tool
This tool provides three face recognition features:
- **Verify Faces**: Compare two specific images to check if they contain the same person
- **Find Faces**: Search for matching faces in a database/folder (supports Google Drive paths in Colab)
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
""")
with gr.Tabs():
with gr.TabItem("Verify Faces"):
with gr.Row():
img1_input = gr.Image(label="First Image", type="pil")
img2_input = gr.Image(label="Second Image", type="pil")
with gr.Row():
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
verify_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
verify_button = gr.Button("Verify Faces", variant="primary")
verify_result_plot = gr.Plot(label="Verification Result")
verify_json = gr.JSON(label="Technical Details")
with gr.TabItem("Find Faces"):
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
db_path_input = gr.Textbox(
label="Database Path (folder path or Google Drive path in Colab)",
placeholder="/content/drive/MyDrive/your_folder"
)
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
with gr.Row():
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
find_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
find_button = gr.Button("Find Matching Faces", variant="primary")
find_result_plot = gr.Plot(label="Search Results")
find_results_table = gr.JSON(label="Detailed Results")
with gr.TabItem("Analyze Face"):
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
actions_checkboxes = gr.CheckboxGroup(
choices=["age", "gender", "race", "emotion"],
value=["age", "gender", "race", "emotion"],
label="Select Attributes to Analyze"
)
analyze_button = gr.Button("Analyze Face", variant="primary")
analyze_result_plot = gr.Plot(label="Analysis Results")
analyze_json = gr.JSON(label="Detailed Analysis")
# Setup all button clicks
verify_button.click(
verify_faces,
inputs=[img1_input, img2_input, verify_threshold, verify_model],
outputs=[verify_result_plot, verify_json]
)
find_button.click(
find_faces,
inputs=[query_img, db_path_input, find_threshold, find_model],
outputs=[find_result_plot, find_results_table]
)
db_files_input.change(
lambda x: "",
inputs=db_files_input,
outputs=db_path_input
)
analyze_button.click(
analyze_face,
inputs=[analyze_img, actions_checkboxes],
outputs=[analyze_result_plot, analyze_json]
)
# Launch the app
demo.launch()