# Install required packages import os import subprocess import sys import importlib import pkg_resources def install_package(package, version=None): package_spec = f"{package}=={version}" if version else package print(f"Installing {package_spec}...") try: subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec]) except subprocess.CalledProcessError as e: print(f"Failed to install {package_spec}: {e}") raise def ensure_package(package, version=None): try: if version: pkg_resources.require(f"{package}=={version}") else: importlib.import_module(package) print(f"{package} is already installed with the correct version.") except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e: print(f"Package requirement failed: {e}") install_package(package, version) # Check environment and install dependencies if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"): print("Setting up environment...") # Install core dependencies ensure_package("numpy", "1.23.5") ensure_package("protobuf", "3.20.3") ensure_package("tensorflow", "2.10.0") ensure_package("opencv-python-headless", "4.7.0.72") # Fix for cv2 error ensure_package("deepface", "0.0.79") ensure_package("gradio", "3.50.2") # Install additional required packages for pkg in ["matplotlib", "pillow", "pandas"]: ensure_package(pkg) # Now import the required modules import gradio as gr import json import cv2 import numpy as np from deepface import DeepFace import matplotlib.pyplot as plt from PIL import Image import tempfile import pandas as pd import shutil # Google Drive integration (for Colab users) if 'google.colab' in sys.modules: from google.colab import drive drive.mount('/content/drive') def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"): temp_dir = tempfile.mkdtemp() img1_path = os.path.join(temp_dir, "image1.jpg") img2_path = os.path.join(temp_dir, "image2.jpg") if isinstance(img1, np.ndarray): Image.fromarray(img1).save(img1_path) else: img1.save(img1_path) if isinstance(img2, np.ndarray): Image.fromarray(img2).save(img2_path) else: img2.save(img2_path) try: result = DeepFace.verify( img1_path=img1_path, img2_path=img2_path, model_name=model, distance_metric="cosine", threshold=threshold ) fig, ax = plt.subplots(1, 2, figsize=(10, 5)) img1_display = cv2.imread(img1_path) img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB) img2_display = cv2.imread(img2_path) img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB) ax[0].imshow(img1_display) ax[0].set_title("Image 1") ax[0].axis("off") ax[1].imshow(img2_display) ax[1].set_title("Image 2") ax[1].axis("off") verification_result = "✅ FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED" confidence = round((1 - result["distance"]) * 100, 2) plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}", fontsize=16, fontweight='bold', color='green' if result["verified"] else 'red') plt.tight_layout() os.remove(img1_path) os.remove(img2_path) os.rmdir(temp_dir) return fig, json.dumps(result, indent=2) except Exception as e: if os.path.exists(img1_path): os.remove(img1_path) if os.path.exists(img2_path): os.remove(img2_path) if os.path.exists(temp_dir): os.rmdir(temp_dir) error_msg = f"Error: {str(e)}" if "No face detected" in str(e): error_msg = "No face detected in one or both images. Please try different images." return None, error_msg def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"): temp_dir = tempfile.mkdtemp() query_path = os.path.join(temp_dir, "query.jpg") if isinstance(query_img, np.ndarray): Image.fromarray(query_img).save(query_path) else: query_img.save(query_path) # Handle cloud storage paths and uploaded files if isinstance(db_folder, str): # Check if it's a Google Drive path if db_folder.startswith("/content/drive"): db_path = db_folder else: # Handle regular path db_path = os.path.abspath(db_folder) if not os.path.exists(db_path): return None, "Invalid database path - directory does not exist" else: # Handle uploaded files db_path = os.path.join(temp_dir, "db") os.makedirs(db_path, exist_ok=True) for i, file in enumerate(db_folder): orig_filename = file.orig_name file_ext = os.path.splitext(orig_filename)[1] new_filename = f"image_{i}{file_ext}" shutil.copy(file.name, os.path.join(db_path, new_filename)) try: dfs = DeepFace.find( img_path=query_path, db_path=db_path, model_name=model, distance_metric="cosine", threshold=threshold, silent=True ) if isinstance(dfs, list): if len(dfs) == 0: return None, "No matching faces found in the database." df = dfs[0] else: df = dfs if df.empty: return None, "No matching faces found in the database." df = df.sort_values(by=["distance"]) num_matches = min(4, len(df)) fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5)) query_display = cv2.imread(query_path) query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB) axes[0].imshow(query_display) axes[0].set_title("Query Image") axes[0].axis("off") valid_matches = 0 for i in range(num_matches): if i >= len(df): break match_path = df.iloc[i]["identity"] if not os.path.exists(match_path): continue distance = df.iloc[i]["distance"] confidence = round((1 - distance) * 100, 2) try: match_img = cv2.imread(match_path) if match_img is None: continue match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB) axes[valid_matches+1].imshow(match_img) axes[valid_matches+1].set_title(f"Match #{valid_matches+1}\nConfidence: {confidence}%") axes[valid_matches+1].axis("off") valid_matches += 1 except: continue # Hide empty axes for j in range(valid_matches+1, num_matches+1): axes[j].axis("off") plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold') plt.tight_layout() results = df[["identity", "distance"]].copy() results["confidence"] = (1 - results["distance"]) * 100 results["confidence"] = results["confidence"].round(2) results = results.rename(columns={"identity": "Image Path"}) os.remove(query_path) if not isinstance(db_folder, str): shutil.rmtree(db_path) return fig, results.to_dict('records') except Exception as e: if os.path.exists(query_path): os.remove(query_path) error_msg = f"Error: {str(e)}" if "No face detected" in str(e): error_msg = "No face detected in the query image. Please try a different image." elif "No such file or directory" in str(e): error_msg = "Invalid database path or corrupted image files" return None, error_msg def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']): temp_dir = tempfile.mkdtemp() img_path = os.path.join(temp_dir, "analyze.jpg") if isinstance(img, np.ndarray): Image.fromarray(img).save(img_path) else: img.save(img_path) try: results = DeepFace.analyze( img_path=img_path, actions=actions, enforce_detection=True, detector_backend='opencv' ) if isinstance(results, list): num_faces = len(results) else: num_faces = 1 results = [results] fig = plt.figure(figsize=(14, 7)) img_display = cv2.imread(img_path) img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB) main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2) main_ax.imshow(img_display) main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)") main_ax.axis('off') for i, face_result in enumerate(results): if i >= 4: break age = face_result.get('age', 'N/A') gender = face_result.get('dominant_gender', 'N/A') race = face_result.get('dominant_race', 'N/A') emotion = face_result.get('dominant_emotion', 'N/A') gender_conf = 'N/A' if 'gender' in face_result and isinstance(face_result['gender'], dict): for g, conf in face_result['gender'].items(): if g.lower() == gender.lower(): gender_conf = f"{conf:.1f}%" break race_conf = 'N/A' if 'race' in face_result and isinstance(face_result['race'], dict): for r, conf in face_result['race'].items(): if r.lower() == race.lower(): race_conf = f"{conf:.1f}%" break emotion_conf = 'N/A' if 'emotion' in face_result and isinstance(face_result['emotion'], dict): for e, conf in face_result['emotion'].items(): if e.lower() == emotion.lower(): emotion_conf = f"{conf:.1f}%" break ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2))) text = ( f"Face #{i+1}\n\n" f"Age: {age}\n\n" f"Gender: {gender} ({gender_conf})\n\n" f"Race: {race} ({race_conf})\n\n" f"Emotion: {emotion} ({emotion_conf})" ) ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11) ax.axis('off') plt.tight_layout() os.remove(img_path) os.rmdir(temp_dir) formatted_results = [] for i, res in enumerate(results[:8]): face_data = { "face_number": i+1, "age": res.get("age", "N/A"), "gender": { "dominant": res.get("dominant_gender", "N/A"), "confidence": res.get("gender", {}) }, "race": { "dominant": res.get("dominant_race", "N/A"), "confidence": res.get("race", {}) }, "emotion": { "dominant": res.get("dominant_emotion", "N/A"), "confidence": res.get("emotion", {}) } } formatted_results.append(face_data) return fig, formatted_results except Exception as e: if os.path.exists(img_path): os.remove(img_path) if os.path.exists(temp_dir): os.rmdir(temp_dir) error_msg = f"Error: {str(e)}" if "No face detected" in str(e): error_msg = "No face detected in the image. Please try a different image." return None, error_msg # Create Gradio interface with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🔍 Complete Face Recognition Tool This tool provides three face recognition features: - **Verify Faces**: Compare two specific images to check if they contain the same person - **Find Faces**: Search for matching faces in a database/folder (supports Google Drive paths in Colab) - **Analyze Face**: Determine age, gender, race, and emotion from a facial image """) with gr.Tabs(): with gr.TabItem("Verify Faces"): with gr.Row(): img1_input = gr.Image(label="First Image", type="pil") img2_input = gr.Image(label="Second Image", type="pil") with gr.Row(): verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05, label="Similarity Threshold (lower = stricter matching)") verify_model = gr.Dropdown( choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Face Recognition Model" ) verify_button = gr.Button("Verify Faces", variant="primary") verify_result_plot = gr.Plot(label="Verification Result") verify_json = gr.JSON(label="Technical Details") with gr.TabItem("Find Faces"): query_img = gr.Image(label="Query Image (Face to find)", type="pil") db_path_input = gr.Textbox( label="Database Path (folder path or Google Drive path in Colab)", placeholder="/content/drive/MyDrive/your_folder" ) db_files_input = gr.File(label="Or upload images for database", file_count="multiple") with gr.Row(): find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05, label="Similarity Threshold (lower = stricter matching)") find_model = gr.Dropdown( choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Face Recognition Model" ) find_button = gr.Button("Find Matching Faces", variant="primary") find_result_plot = gr.Plot(label="Search Results") find_results_table = gr.JSON(label="Detailed Results") with gr.TabItem("Analyze Face"): analyze_img = gr.Image(label="Upload Image for Analysis", type="pil") actions_checkboxes = gr.CheckboxGroup( choices=["age", "gender", "race", "emotion"], value=["age", "gender", "race", "emotion"], label="Select Attributes to Analyze" ) analyze_button = gr.Button("Analyze Face", variant="primary") analyze_result_plot = gr.Plot(label="Analysis Results") analyze_json = gr.JSON(label="Detailed Analysis") # Setup all button clicks verify_button.click( verify_faces, inputs=[img1_input, img2_input, verify_threshold, verify_model], outputs=[verify_result_plot, verify_json] ) find_button.click( find_faces, inputs=[query_img, db_path_input, find_threshold, find_model], outputs=[find_result_plot, find_results_table] ) db_files_input.change( lambda x: "", inputs=db_files_input, outputs=db_path_input ) analyze_button.click( analyze_face, inputs=[analyze_img, actions_checkboxes], outputs=[analyze_result_plot, analyze_json] ) # Launch the app demo.launch()