Natwar's picture
Update app.py
0e514e1 verified
raw
history blame
14.3 kB
# Install required packages
import gradio as gr
import json
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import os
import pandas as pd
import shutil
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
img1_path = os.path.join(temp_dir, "image1.jpg")
img2_path = os.path.join(temp_dir, "image2.jpg")
if isinstance(img1, np.ndarray):
Image.fromarray(img1).save(img1_path)
else:
img1.save(img1_path)
if isinstance(img2, np.ndarray):
Image.fromarray(img2).save(img2_path)
else:
img2.save(img2_path)
try:
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
img1_display = cv2.imread(img1_path)
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
img2_display = cv2.imread(img2_path)
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
ax[0].imshow(img1_display)
ax[0].set_title("Image 1")
ax[0].axis("off")
ax[1].imshow(img2_display)
ax[1].set_title("Image 2")
ax[1].axis("off")
verification_result = "βœ… FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
confidence = round((1 - result["distance"]) * 100, 2)
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
fontsize=16, fontweight='bold',
color='green' if result["verified"] else 'red')
plt.tight_layout()
os.remove(img1_path)
os.remove(img2_path)
os.rmdir(temp_dir)
return fig, json.dumps(result, indent=2)
except Exception as e:
if os.path.exists(img1_path):
os.remove(img1_path)
if os.path.exists(img2_path):
os.remove(img2_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in one or both images. Please try different images."
return None, error_msg
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
query_path = os.path.join(temp_dir, "query.jpg")
if isinstance(query_img, np.ndarray):
Image.fromarray(query_img).save(query_path)
else:
query_img.save(query_path)
if isinstance(db_folder, str):
db_path = db_folder
else:
db_path = os.path.join(temp_dir, "db")
os.makedirs(db_path, exist_ok=True)
for i, file in enumerate(db_folder):
orig_filename = file.orig_name # Get original filename with extension
file_ext = os.path.splitext(orig_filename)[1]
new_filename = f"image_{i}{file_ext}"
shutil.copy(file.name, os.path.join(db_path, new_filename))
try:
dfs = DeepFace.find(
img_path=query_path,
db_path=db_path,
model_name=model,
distance_metric="cosine",
threshold=threshold,
silent=True # Disable unnecessary logging
)
if isinstance(dfs, list):
if len(dfs) == 0:
return None, "No matching faces found in the database."
df = dfs[0]
else:
df = dfs
if df.empty:
return None, "No matching faces found in the database."
df = df.sort_values(by=["distance"])
num_matches = min(4, len(df))
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
query_display = cv2.imread(query_path)
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
axes[0].imshow(query_display)
axes[0].set_title("Query Image")
axes[0].axis("off")
for i in range(num_matches):
match_path = df.iloc[i]["identity"]
if not os.path.exists(match_path):
continue # Skip invalid paths
distance = df.iloc[i]["distance"]
confidence = round((1 - distance) * 100, 2)
match_img = cv2.imread(match_path)
if match_img is None:
continue # Skip unreadable images
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
axes[i+1].imshow(match_img)
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
axes[i+1].axis("off")
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
plt.tight_layout()
results = df[["identity", "distance"]].copy()
results["confidence"] = (1 - results["distance"]) * 100
results["confidence"] = results["confidence"].round(2)
results = results.rename(columns={"identity": "Image Path"})
os.remove(query_path)
if not isinstance(db_folder, str):
shutil.rmtree(db_path)
return fig, results.to_dict('records')
except Exception as e:
if os.path.exists(query_path):
os.remove(query_path)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the query image. Please try a different image."
elif "No such file or directory" in str(e):
error_msg = "Invalid database path or corrupted image files"
return None, error_msg
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
temp_dir = tempfile.mkdtemp()
img_path = os.path.join(temp_dir, "analyze.jpg")
if isinstance(img, np.ndarray):
Image.fromarray(img).save(img_path)
else:
img.save(img_path)
try:
results = DeepFace.analyze(
img_path=img_path,
actions=actions,
enforce_detection=True,
detector_backend='opencv'
)
if isinstance(results, list):
num_faces = len(results)
else:
num_faces = 1
results = [results]
fig = plt.figure(figsize=(14, 7))
img_display = cv2.imread(img_path)
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
main_ax.imshow(img_display)
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
main_ax.axis('off')
for i, face_result in enumerate(results):
if i >= 4:
break
age = face_result.get('age', 'N/A')
gender = face_result.get('dominant_gender', 'N/A')
race = face_result.get('dominant_race', 'N/A')
emotion = face_result.get('dominant_emotion', 'N/A')
gender_conf = 'N/A'
if 'gender' in face_result and isinstance(face_result['gender'], dict):
for g, conf in face_result['gender'].items():
if g.lower() == gender.lower():
gender_conf = f"{conf:.1f}%"
break
race_conf = 'N/A'
if 'race' in face_result and isinstance(face_result['race'], dict):
for r, conf in face_result['race'].items():
if r.lower() == race.lower():
race_conf = f"{conf:.1f}%"
break
emotion_conf = 'N/A'
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
for e, conf in face_result['emotion'].items():
if e.lower() == emotion.lower():
emotion_conf = f"{conf:.1f}%"
break
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
text = (
f"Face #{i+1}\n\n"
f"Age: {age}\n\n"
f"Gender: {gender} ({gender_conf})\n\n"
f"Race: {race} ({race_conf})\n\n"
f"Emotion: {emotion} ({emotion_conf})"
)
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
ax.axis('off')
plt.tight_layout()
os.remove(img_path)
os.rmdir(temp_dir)
formatted_results = []
for i, res in enumerate(results[:8]):
face_data = {
"face_number": i+1,
"age": res.get("age", "N/A"),
"gender": {
"dominant": res.get("dominant_gender", "N/A"),
"confidence": res.get("gender", {})
},
"race": {
"dominant": res.get("dominant_race", "N/A"),
"confidence": res.get("race", {})
},
"emotion": {
"dominant": res.get("dominant_emotion", "N/A"),
"confidence": res.get("emotion", {})
}
}
formatted_results.append(face_data)
return fig, formatted_results
except Exception as e:
if os.path.exists(img_path):
os.remove(img_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = f"Error: {str(e)}"
if "No face detected" in str(e):
error_msg = "No face detected in the image. Please try a different image."
return None, error_msg
# Create Gradio interface
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ” Complete Face Recognition Tool
This tool provides three face recognition features:
- **Verify Faces**: Compare two specific images to check if they contain the same person
- **Find Faces**: Search for matching faces in a database/folder
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
""")
with gr.Tabs():
with gr.TabItem("Verify Faces"):
with gr.Row():
img1_input = gr.Image(label="First Image", type="pil")
img2_input = gr.Image(label="Second Image", type="pil")
with gr.Row():
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
verify_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
verify_button = gr.Button("Verify Faces", variant="primary")
verify_result_plot = gr.Plot(label="Verification Result")
verify_json = gr.JSON(label="Technical Details")
verify_button.click(
verify_faces,
inputs=[img1_input, img2_input, verify_threshold, verify_model],
outputs=[verify_result_plot, verify_json]
)
gr.Markdown("""... (keep existing markdown) ...""")
with gr.TabItem("Find Faces"):
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
with gr.Row():
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter matching)")
find_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Face Recognition Model"
)
find_button = gr.Button("Find Matching Faces", variant="primary")
find_result_plot = gr.Plot(label="Search Results")
find_results_table = gr.JSON(label="Detailed Results")
find_button.click(
find_faces,
inputs=[query_img, db_path_input, find_threshold, find_model],
outputs=[find_result_plot, find_results_table]
)
db_files_input.change(
lambda x: "",
inputs=db_files_input,
outputs=db_path_input
)
gr.Markdown("""... (keep existing markdown) ...""")
with gr.TabItem("Analyze Face"):
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
actions_checkboxes = gr.CheckboxGroup(
choices=["age", "gender", "race", "emotion"],
value=["age", "gender", "race", "emotion"],
label="Select Attributes to Analyze"
)
analyze_button = gr.Button("Analyze Face", variant="primary")
analyze_result_plot = gr.Plot(label="Analysis Results")
analyze_json = gr.JSON(label="Detailed Analysis")
analyze_button.click(
analyze_face,
inputs=[analyze_img, actions_checkboxes],
outputs=[analyze_result_plot, analyze_json]
)
gr.Markdown("""... (keep existing markdown) ...""")
# Launch the app
demo.launch()