File size: 74,859 Bytes
b17b1a5 6a1d7e9 b17b1a5 3cc14de b17b1a5 8816b1d b17b1a5 7e99f82 b17b1a5 7e99f82 b19734c 7e99f82 b17b1a5 0a23ed2 b17b1a5 0a23ed2 b17b1a5 0a23ed2 b17b1a5 0a23ed2 b17b1a5 0a23ed2 b17b1a5 eeb4bc3 1bec912 39ab59e b17b1a5 b19734c b17b1a5 b19734c 7e99f82 b17b1a5 7e99f82 b17b1a5 7dbf908 b17b1a5 b19734c 7e99f82 b17b1a5 fe91776 b17b1a5 eadae9c b17b1a5 eadae9c b17b1a5 eadae9c b17b1a5 eadae9c b17b1a5 87bd0d5 eadae9c b17b1a5 f1a2db3 b17b1a5 92a66a4 b17b1a5 23766d1 b17b1a5 23766d1 b17b1a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 |
import marimo
__generated_with = "0.13.0"
app = marimo.App(width="full")
with app.setup:
# Initialization code that runs before all other cells
import marimo as mo
from typing import Dict, Optional, List, Union, Any
from ibm_watsonx_ai import APIClient, Credentials
from pathlib import Path
import pandas as pd
import mimetypes
import requests
import zipfile
import tempfile
import certifi
import base64
import polars
import nltk
import time
import json
import ast
import os
import io
import re
def get_iam_token(api_key):
return requests.post(
'https://iam.cloud.ibm.com/identity/token',
headers={'Content-Type': 'application/x-www-form-urlencoded'},
data={'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': api_key},
verify=certifi.where()
).json()['access_token']
def setup_task_credentials(client):
# Get existing task credentials
existing_credentials = client.task_credentials.get_details()
# Delete existing credentials if any
if "resources" in existing_credentials and existing_credentials["resources"]:
for cred in existing_credentials["resources"]:
cred_id = client.task_credentials.get_id(cred)
client.task_credentials.delete(cred_id)
# Store new credentials
return client.task_credentials.store()
def get_cred_value(key, creds_var_name="baked_in_creds", default=""): ### Helper for working with preset credentials
"""
Helper function to safely get a value from a credentials dictionary.
Args:
key: The key to look up in the credentials dictionary.
creds_var_name: The variable name of the credentials dictionary.
default: The default value to return if the key is not found.
Returns:
The value from the credentials dictionary if it exists and contains the key,
otherwise returns the default value.
"""
# Check if the credentials variable exists in globals
if creds_var_name in globals():
creds_dict = globals()[creds_var_name]
if isinstance(creds_dict, dict) and key in creds_dict:
return creds_dict[key]
return default
@app.cell
def client_variables(client_instantiation_form):
if client_instantiation_form.value:
client_setup = client_instantiation_form.value
else:
client_setup = None
### Extract Credential Variables:
if client_setup is not None:
wx_url = client_setup["wx_region"]
wx_api_key = client_setup["wx_api_key"].strip()
os.environ["WATSONX_APIKEY"] = wx_api_key
if client_setup["project_id"] is not None:
project_id = client_setup["project_id"].strip()
else:
project_id = None
if client_setup["space_id"] is not None:
space_id = client_setup["space_id"].strip()
else:
space_id = None
else:
os.environ["WATSONX_APIKEY"] = ""
project_id = None
space_id = None
wx_api_key = None
wx_url = None
return client_setup, project_id, space_id, wx_api_key, wx_url
@app.cell
def _(client_setup, wx_api_key):
if client_setup:
token = get_iam_token(wx_api_key)
else:
token = None
return
@app.cell
def _():
baked_in_creds = {
"purpose": "",
"api_key": "",
"project_id": "",
"space_id": "",
}
return baked_in_creds
@app.cell
def client_instantiation(
client_setup,
project_id,
space_id,
wx_api_key,
wx_url,
):
### Instantiate the watsonx.ai client
if client_setup:
wx_credentials = Credentials(
url=wx_url,
api_key=wx_api_key
)
if project_id:
project_client = APIClient(credentials=wx_credentials, project_id=project_id)
else:
project_client = None
if space_id:
deployment_client = APIClient(credentials=wx_credentials, space_id=space_id)
else:
deployment_client = None
if project_client is not None:
task_credentials_details = setup_task_credentials(project_client)
else:
task_credentials_details = setup_task_credentials(deployment_client)
else:
wx_credentials = None
project_client = None
deployment_client = None
task_credentials_details = None
client_status = mo.md("### Client Instantiation Status will turn Green When Ready")
if project_client is not None or deployment_client is not None:
client_callout_kind = "success"
else:
client_callout_kind = "neutral"
return (
client_callout_kind,
client_status,
deployment_client,
project_client,
)
@app.cell
def _():
mo.md(
r"""
#watsonx.ai Embedding Visualizer - Marimo Notebook
#### This marimo notebook can be used to develop a more intuitive understanding of how vector embeddings work by creating a 3D visualization of vector embeddings based on chunked PDF document pages.
#### It can also serve as a useful tool for identifying gaps in model choice, chunking strategy or contents used in building collections by showing how far you are from what you want.
<br>
/// admonition
Created by ***Milan Mrdenovic*** [[email protected]] for IBM Ecosystem Client Engineering, NCEE - ***version 5.3** - 20.04.2025*
///
>Licensed under apache 2.0, users hold full accountability for any use or modification of the code.
><br>This asset is part of a set meant to support IBMers, IBM Partners, Clients in developing understanding of how to better utilize various watsonx features and generative AI as a subject matter.
<br>
"""
)
return
@app.cell
def _():
mo.md("""###Part 1 - Client Setup, File Preparation and Chunking""")
return
@app.cell
def accordion_client_setup(client_selector, client_stack):
ui_accordion_part_1_1 = mo.accordion(
{
"Instantiate Client": mo.vstack([client_stack, client_selector], align="center"),
}
)
ui_accordion_part_1_1
return
@app.cell
def accordion_file_upload(select_stack):
ui_accordion_part_1_2 = mo.accordion(
{
"Select Model & Upload Files": select_stack
}
)
ui_accordion_part_1_2
return
@app.cell
def loaded_texts(
create_temp_files_from_uploads,
file_loader,
pdf_reader,
run_upload_button,
set_text_state,
):
if file_loader.value is not None and run_upload_button.value:
filepaths = create_temp_files_from_uploads(file_loader.value)
loaded_texts = load_pdf_data_with_progress(pdf_reader, filepaths, file_loader.value, show_progress=True)
set_text_state(loaded_texts)
else:
filepaths = None
loaded_texts = None
return
@app.cell
def accordion_chunker_setup(chunker_setup):
ui_accordion_part_1_3 = mo.accordion(
{
"Chunker Setup": chunker_setup
}
)
ui_accordion_part_1_3
return
@app.cell
def chunk_documents_to_nodes(
get_text_state,
sentence_splitter,
sentence_splitter_config,
set_chunk_state,
):
if sentence_splitter_config.value and sentence_splitter and get_text_state() is not None:
chunked_texts = chunk_documents(get_text_state(), sentence_splitter, show_progress=True)
set_chunk_state(chunked_texts)
else:
chunked_texts = None
return (chunked_texts,)
@app.cell
def _():
mo.md(r"""###Part 2 - Query Setup and Visualization""")
return
@app.cell
def accordion_chunk_range(chart_range_selection):
ui_accordion_part_2_1 = mo.accordion(
{
"Chunk Range Selection": chart_range_selection
}
)
ui_accordion_part_2_1
return
@app.cell
def chunk_embedding(
chunks_to_process,
embedding,
sentence_splitter_config,
set_embedding_state,
):
if sentence_splitter_config.value is not None and chunks_to_process is not None:
with mo.status.spinner(title="Embedding Documents...", remove_on_exit=True) as _spinner:
output_embeddings = embedding.embed_documents(chunks_to_process)
_spinner.update("Almost Done")
time.sleep(1.5)
set_embedding_state(output_embeddings)
_spinner.update("Documents Embedded")
else:
output_embeddings = None
return
@app.cell
def preview_chunks(chunks_dict):
if chunks_dict is not None:
stats = create_stats(chunks_dict,
bordered=True,
object_names=['text','text'],
group_by_row=True,
items_per_row=5,
gap=1,
label="Chunk")
ui_chunk_viewer = mo.accordion(
{
"View Chunks": stats,
}
)
else:
ui_chunk_viewer = None
ui_chunk_viewer
return
@app.cell
def accordion_query_view(chart_visualization, query_stack):
ui_accordion_part_2_2 = mo.accordion(
{
"Query": mo.vstack([query_stack, mo.hstack([chart_visualization])], align="center", gap=3)
}
)
ui_accordion_part_2_2
return
@app.cell
def chunker_setup(sentence_splitter_config):
chunker_setup = mo.hstack([sentence_splitter_config], justify="space-around", align="center", widths=[0.55])
return (chunker_setup,)
@app.cell
def file_and_model_select(
file_loader,
get_embedding_model_list,
run_upload_button,
):
select_stack = mo.hstack([get_embedding_model_list(), mo.vstack([file_loader, run_upload_button], align="center")], justify="space-around", align="center", widths=[0.3,0.3])
return (select_stack,)
@app.cell
def client_instantiation_form():
# Endpoints
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
regions = {
"US": "https://us-south.ml.cloud.ibm.com",
"EU": "https://eu-de.ml.cloud.ibm.com",
"GB": "https://eu-gb.ml.cloud.ibm.com",
"JP": "https://jp-tok.ml.cloud.ibm.com",
"AU": "https://au-syd.ml.cloud.ibm.com",
"CA": "https://ca-tor.ml.cloud.ibm.com"
}
# Create a form with multiple elements
client_instantiation_form = (
mo.md('''
###**watsonx.ai credentials:**
{wx_region}
{wx_api_key}
{project_id}
{space_id}
> You can add either a project_id, space_id or both, **only one is required**.
> If you provide both you can switch the active one in the dropdown.
''')
.batch(
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:",
kind="password", value=get_cred_value('api_key', creds_var_name='baked_in_creds')),
project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:",
kind="text", value=get_cred_value('project_id', creds_var_name='baked_in_creds')),
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:",
kind="text", value=get_cred_value('space_id', creds_var_name='baked_in_creds'))
,)
.form(show_clear_button=True, bordered=False)
)
return (client_instantiation_form,)
@app.cell
def instantiation_status(
client_callout_kind,
client_instantiation_form,
client_status,
):
client_callout = mo.callout(client_status, kind=client_callout_kind)
client_stack = mo.hstack([client_instantiation_form, client_callout], align="center", justify="space-around", gap=10)
return (client_stack,)
@app.cell
def client_selector(deployment_client, project_client):
if deployment_client is not None:
client_options = {"Deployment Client":deployment_client}
elif project_client is not None:
client_options = {"Project Client":project_client}
elif project_client is not None and deployment_client is not None:
client_options = {"Project Client":project_client,"Deployment Client":deployment_client}
else:
client_options = {"No Client": "Instantiate a Client"}
default_client = next(iter(client_options))
client_selector = mo.ui.dropdown(client_options, value=default_client, label="**Select your active client:**")
return (client_selector,)
@app.cell
def active_client(client_selector):
client_key = client_selector.value
if client_key == "Instantiate a Client":
client = None
else:
client = client_key
return (client,)
@app.cell
def emb_model_selection(client, set_embedding_model_list):
if client is not None:
model_specs = client.foundation_models.get_embeddings_model_specs()
# model_specs = client.foundation_models.get_model_specs()
resources = model_specs["resources"]
# Define embedding models reference data
embedding_models = {
"ibm/granite-embedding-107m-multilingual": {"max_tokens": 512, "embedding_dimensions": 384},
"ibm/granite-embedding-278m-multilingual": {"max_tokens": 512, "embedding_dimensions": 768},
"ibm/slate-125m-english-rtrvr-v2": {"max_tokens": 512, "embedding_dimensions": 768},
"ibm/slate-125m-english-rtrvr": {"max_tokens": 512, "embedding_dimensions": 768},
"ibm/slate-30m-english-rtrvr-v2": {"max_tokens": 512, "embedding_dimensions": 384},
"ibm/slate-30m-english-rtrvr": {"max_tokens": 512, "embedding_dimensions": 384},
"sentence-transformers/all-minilm-l6-v2": {"max_tokens": 128, "embedding_dimensions": 384},
"sentence-transformers/all-minilm-l12-v2": {"max_tokens": 128, "embedding_dimensions": 384},
"intfloat/multilingual-e5-large": {"max_tokens": 512, "embedding_dimensions": 1024}
}
# Get model IDs from resources
model_id_list = []
for resource in resources:
model_id_list.append(resource["model_id"])
# Create enhanced model data for the table
embedding_model_data = []
for model_id in model_id_list:
model_entry = {"model_id": model_id}
# Add properties if model exists in our reference, otherwise use 0
if model_id in embedding_models:
model_entry["max_tokens"] = embedding_models[model_id]["max_tokens"]
model_entry["embedding_dimensions"] = embedding_models[model_id]["embedding_dimensions"]
else:
model_entry["max_tokens"] = 0
model_entry["embedding_dimensions"] = 0
embedding_model_data.append(model_entry)
embedding_model_selection = mo.ui.table(
embedding_model_data,
selection="single", # Only allow selecting one row
label="Select an embedding model to use.",
page_size=30,
initial_selection=[1]
)
set_embedding_model_list(embedding_model_selection)
else:
default_model_data = [{
"model_id": "ibm/granite-embedding-107m-multilingual",
"max_tokens": 512,
"embedding_dimensions": 384
}]
set_embedding_model_list(create_emb_model_selection_table(default_model_data, initial_selection=0, selection_type="single", label="Select a model to use."))
return
@app.function
def create_emb_model_selection_table(model_data, initial_selection=0, selection_type="single", label="Select a model to use."):
embedding_model_selection = mo.ui.table(
model_data,
selection=selection_type, # Only allow selecting one row
label=label,
page_size=30,
initial_selection=[initial_selection]
)
return embedding_model_selection
@app.cell
def embedding_model():
get_embedding_model_list, set_embedding_model_list = mo.state(None)
return get_embedding_model_list, set_embedding_model_list
@app.cell
def emb_model_parameters(emb_model_max_tk):
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames as EmbedParams
if embedding_model is not None:
embed_params = {
EmbedParams.TRUNCATE_INPUT_TOKENS: emb_model_max_tk,
EmbedParams.RETURN_OPTIONS: {
'input_text': True
}
}
else:
embed_params = {
EmbedParams.TRUNCATE_INPUT_TOKENS: 128,
EmbedParams.RETURN_OPTIONS: {
'input_text': True
}
}
return embed_params
@app.cell
def emb_model_state(get_embedding_model_list):
embedding_model = get_embedding_model_list()
return (embedding_model,)
@app.cell
def emb_model_setup(embedding_model):
if embedding_model is not None:
emb_model = embedding_model.value[0]['model_id']
emb_model_max_tk = embedding_model.value[0]['max_tokens']
emb_model_emb_dim = embedding_model.value[0]['embedding_dimensions']
else:
emb_model = None
emb_model_max_tk = None
emb_model_emb_dim = None
return emb_model, emb_model_emb_dim, emb_model_max_tk
@app.cell
def emb_model_instantiation(client, emb_model, embed_params):
from ibm_watsonx_ai.foundation_models import Embeddings
if client is not None:
embedding = Embeddings(
model_id=emb_model,
api_client=client,
params=embed_params,
batch_size=1000,
concurrency_limit=10
)
else:
embedding = None
return (embedding,)
@app.cell
def _():
get_embedding_state, set_embedding_state = mo.state(None)
return get_embedding_state, set_embedding_state
@app.cell
def _():
get_query_state, set_query_state = mo.state(None)
return get_query_state, set_query_state
@app.cell
def file_loader_input():
file_loader = mo.ui.file(
kind="area",
filetypes=[".pdf"],
label=" Load .pdf files ",
multiple=True
)
return (file_loader,)
@app.cell
def file_loader_run(file_loader):
if file_loader.value:
run_upload_button = mo.ui.run_button(label="Load Files")
else:
run_upload_button = mo.ui.run_button(disabled=True, label="Load Files")
return (run_upload_button,)
@app.cell
def helper_function_tempfiles():
def create_temp_files_from_uploads(upload_results) -> List[str]:
"""
Creates temporary files from a tuple of FileUploadResults objects and returns their paths.
Args:
upload_results: Object containing a value attribute that is a tuple of FileUploadResults
Returns:
List of temporary file paths
"""
temp_file_paths = []
# Get the number of items in the tuple
num_items = len(upload_results)
# Process each item by index
for i in range(num_items):
result = upload_results[i] # Get item by index
# Create a temporary file with the original filename
temp_dir = tempfile.gettempdir()
file_name = result.name
temp_path = os.path.join(temp_dir, file_name)
# Write the contents to the temp file
with open(temp_path, 'wb') as temp_file:
temp_file.write(result.contents)
# Add the path to our list
temp_file_paths.append(temp_path)
return temp_file_paths
def cleanup_temp_files(temp_file_paths: List[str]) -> None:
"""Delete temporary files after use."""
for path in temp_file_paths:
if os.path.exists(path):
os.unlink(path)
return (create_temp_files_from_uploads,)
@app.function
def load_pdf_data_with_progress(pdf_reader, filepaths, file_loader_value, show_progress=True):
"""
Loads PDF data for each file path and organizes results by original filename.
Args:
pdf_reader: The PyMuPDFReader instance
filepaths: List of temporary file paths
file_loader_value: The original upload results value containing file information
show_progress: Whether to show a progress bar during loading (default: False)
Returns:
Dictionary mapping original filenames to their loaded text content
"""
results = {}
# Process files with or without progress bar
if show_progress:
import marimo as mo
# Use progress bar with the length of filepaths as total
with mo.status.progress_bar(
total=len(filepaths),
title="Loading PDFs",
subtitle="Processing documents...",
completion_title="PDF Loading Complete",
completion_subtitle=f"{len(filepaths)} documents processed",
remove_on_exit=True
) as bar:
# Process each file path
for i, file_path in enumerate(filepaths):
original_file_name = file_loader_value[i].name
bar.update(subtitle=f"Processing {original_file_name}...")
loaded_text = pdf_reader.load_data(file_path=file_path, metadata=True)
# Store the result with the original filename as the key
results[original_file_name] = loaded_text
# Update progress bar
bar.update(increment=1)
else:
# Original logic without progress bar
for i, file_path in enumerate(filepaths):
original_file_name = file_loader_value[i].name
loaded_text = pdf_reader.load_data(file_path=file_path, metadata=True)
results[original_file_name] = loaded_text
return results
@app.cell
def file_readers():
from llama_index.readers.file import PyMuPDFReader
from llama_index.readers.file import FlatReader
from llama_index.core.node_parser import SentenceSplitter
### File Readers
pdf_reader = PyMuPDFReader()
# flat_file_reader = FlatReader()
return SentenceSplitter, pdf_reader
@app.cell
def sentence_splitter_setup():
### Chunker Setup
sentence_splitter_config = (
mo.md('''
###**Chunking Setup:**
> Unless you want to do some advanced sentence splitting, it's best to stick to adjusting only the chunk size and overlap. Changing the other settings might result in unexpected results.
Separator value is set to **" "** by default, while the paragraph separator is **"\\n\\n\\n"**.
{chunk_size}
{chunk_overlap}
{separator} {paragraph_separator}
{secondary_chunking_regex} {include_metadata}
''')
.batch(
chunk_size = mo.ui.slider(start=100, stop=5000, step=1, label="**Chunk Size:**", value=350, show_value=True, full_width=True),
chunk_overlap = mo.ui.slider(start=1, stop=1000, step=1, label="**Chunk Overlap** *(Must always be smaller than Chunk Size)* **:**", value=50, show_value=True, full_width=True),
separator = mo.ui.text(placeholder="Define a separator", label="**Separator:**", kind="text", value=" "),
paragraph_separator = mo.ui.text(placeholder="Define a paragraph separator",
label="**Paragraph Separator:**", kind="text",
value="\n\n\n"),
secondary_chunking_regex = mo.ui.text(placeholder="Define a secondary chunking regex",
label="**Chunking Regex:**", kind="text",
value="[^,.;?!]+[,.;?!]?"),
include_metadata= mo.ui.checkbox(value=True, label="**Include Metadata**")
)
.form(show_clear_button=True, bordered=False)
)
return (sentence_splitter_config,)
@app.cell
def sentence_splitter_instantiation(
SentenceSplitter,
sentence_splitter_config,
):
### Chunker/Sentence Splitter
def simple_whitespace_tokenizer(text):
return text.split()
if sentence_splitter_config.value is not None:
sentence_splitter_config_values = sentence_splitter_config.value
validated_chunk_overlap = min(sentence_splitter_config_values.get("chunk_overlap"),
int(sentence_splitter_config_values.get("chunk_size") * 0.3))
sentence_splitter = SentenceSplitter(
chunk_size=sentence_splitter_config_values.get("chunk_size"),
chunk_overlap=validated_chunk_overlap,
separator=sentence_splitter_config_values.get("separator"),
paragraph_separator=sentence_splitter_config_values.get("paragraph_separator"),
secondary_chunking_regex=sentence_splitter_config_values.get("secondary_chunking_regex"),
include_metadata=sentence_splitter_config_values.get("include_metadata"),
tokenizer=simple_whitespace_tokenizer
)
else:
sentence_splitter = SentenceSplitter(
chunk_size=2048,
chunk_overlap=204,
separator=" ",
paragraph_separator="\n\n\n",
secondary_chunking_regex="[^,.;?!]+[,.;?!]?",
include_metadata=True,
tokenizer=simple_whitespace_tokenizer
)
return (sentence_splitter,)
@app.cell
def text_state():
get_text_state, set_text_state = mo.state(None)
return get_text_state, set_text_state
@app.cell
def chunk_state():
get_chunk_state, set_chunk_state = mo.state(None)
return get_chunk_state, set_chunk_state
@app.function
def chunk_documents(loaded_texts, sentence_splitter, show_progress=True):
"""
Process each document in the loaded_texts dictionary using the sentence_splitter,
with an optional marimo progress bar tracking progress at document level.
Args:
loaded_texts (dict): Dictionary containing lists of Document objects
sentence_splitter: The sentence splitter object with get_nodes_from_documents method
show_progress (bool): Whether to show a progress bar during processing
Returns:
dict: Dictionary with the same structure but containing chunked texts
"""
chunked_texts_dict = {}
# Get the total number of documents across all keys
total_docs = sum(len(docs) for docs in loaded_texts.values())
processed_docs = 0
# Process with or without progress bar
if show_progress:
import marimo as mo
# Use progress bar with the total number of documents as total
with mo.status.progress_bar(
total=total_docs,
title="Processing Documents",
subtitle="Chunking documents...",
completion_title="Processing Complete",
completion_subtitle=f"{total_docs} documents processed",
remove_on_exit=True
) as bar:
# Process each key-value pair in the loaded_texts dictionary
for key, documents in loaded_texts.items():
# Update progress bar subtitle to show current key
doc_count = len(documents)
bar.update(subtitle=f"Chunking {key}... ({doc_count} documents)")
# Apply the sentence splitter to each list of documents
chunked_texts = sentence_splitter.get_nodes_from_documents(
documents,
show_progress=False # Disable internal progress to avoid nested bars
)
# Store the result with the same key
chunked_texts_dict[key] = chunked_texts
time.sleep(0.15)
# Update progress bar with the number of documents in this batch
bar.update(increment=doc_count)
processed_docs += doc_count
else:
# Process without progress bar
for key, documents in loaded_texts.items():
chunked_texts = sentence_splitter.get_nodes_from_documents(
documents,
show_progress=True # Use the internal progress bar if no marimo bar
)
chunked_texts_dict[key] = chunked_texts
return chunked_texts_dict
@app.cell
def chunked_nodes(chunked_texts, get_chunk_state, sentence_splitter):
if chunked_texts is not None and sentence_splitter:
chunked_documents = get_chunk_state()
else:
chunked_documents = None
return (chunked_documents,)
@app.cell
def prep_cumulative_df(chunked_documents, llamaindex_convert_docs_multi):
if chunked_documents is not None:
dict_from_nodes = llamaindex_convert_docs_multi(chunked_documents)
nodes_from_dict = llamaindex_convert_docs_multi(dict_from_nodes)
else:
dict_from_nodes = None
nodes_from_dict = None
return (dict_from_nodes,)
@app.cell
def chunks_to_process(
dict_from_nodes,
document_range_stack,
get_data_in_range_triplequote,
):
if dict_from_nodes is not None and document_range_stack is not None:
chunk_dict_df = create_cumulative_dataframe(dict_from_nodes)
if document_range_stack.value is not None:
chunk_start_idx = document_range_stack.value[0]
chunk_end_idx = document_range_stack.value[1]
else:
chunk_start_idx = 0
chunk_end_idx = len(chunk_dict_df)
chunk_range_index = [chunk_start_idx, chunk_end_idx]
chunks_dict = get_data_in_range_triplequote(chunk_dict_df,
index_range=chunk_range_index,
columns_to_include=["text"])
chunks_to_process = chunks_dict['text'] if 'text' in chunks_dict else []
else:
chunk_objects = None
chunks_dict = None
chunks_to_process = None
return chunks_dict, chunks_to_process
@app.cell
def helper_function_doc_formatting():
def llamaindex_convert_docs_multi(items):
"""
Automatically convert between document objects and dictionaries.
This function handles:
- Converting dictionaries to document objects
- Converting document objects to dictionaries
- Processing lists or individual items
- Supporting dictionary structures where values are lists of documents
Args:
items: A document object, dictionary, or list of either.
Can also be a dictionary mapping filenames to lists of documents.
Returns:
Converted item(s) maintaining the original structure
"""
# Handle empty or None input
if not items:
return []
# Handle dictionary mapping filenames to document lists (from load_pdf_data)
if isinstance(items, dict) and all(isinstance(v, list) for v in items.values()):
result = {}
for filename, doc_list in items.items():
result[filename] = llamaindex_convert_docs(doc_list)
return result
# Handle single items (not in a list)
if not isinstance(items, list):
# Single dictionary to document
if isinstance(items, dict):
# Determine document class
doc_class = None
if 'doc_type' in items:
import importlib
module_path, class_name = items['doc_type'].rsplit('.', 1)
module = importlib.import_module(module_path)
doc_class = getattr(module, class_name)
if not doc_class:
from llama_index.core.schema import Document
doc_class = Document
return doc_class.from_dict(items)
# Single document to dictionary
elif hasattr(items, 'to_dict'):
return items.to_dict()
# Return as is if can't convert
return items
# Handle list input
result = []
# Handle empty list
if len(items) == 0:
return result
# Determine the type of conversion based on the first non-None item
first_item = next((item for item in items if item is not None), None)
# If we found no non-None items, return empty list
if first_item is None:
return result
# Convert dictionaries to documents
if isinstance(first_item, dict):
# Get the right document class from the items themselves
doc_class = None
# Try to get doc class from metadata if available
if 'doc_type' in first_item:
import importlib
module_path, class_name = first_item['doc_type'].rsplit('.', 1)
module = importlib.import_module(module_path)
doc_class = getattr(module, class_name)
if not doc_class:
# Fallback to default Document class from llama_index
from llama_index.core.schema import Document
doc_class = Document
# Convert each dictionary to document
for item in items:
if isinstance(item, dict):
result.append(doc_class.from_dict(item))
elif item is None:
result.append(None)
elif isinstance(item, list):
result.append(llamaindex_convert_docs(item))
else:
result.append(item)
# Convert documents to dictionaries
else:
for item in items:
if hasattr(item, 'to_dict'):
result.append(item.to_dict())
elif item is None:
result.append(None)
elif isinstance(item, list):
result.append(llamaindex_convert_docs(item))
else:
result.append(item)
return result
def llamaindex_convert_docs(items):
"""
Automatically convert between document objects and dictionaries.
Args:
items: A list of document objects or dictionaries
Returns:
List of converted items (dictionaries or document objects)
"""
result = []
# Handle empty or None input
if not items:
return result
# Determine the type of conversion based on the first item
if isinstance(items[0], dict):
# Get the right document class from the items themselves
# Look for a 'doc_type' or '__class__' field in the dictionary
doc_class = None
# Try to get doc class from metadata if available
if 'doc_type' in items[0]:
import importlib
module_path, class_name = items[0]['doc_type'].rsplit('.', 1)
module = importlib.import_module(module_path)
doc_class = getattr(module, class_name)
if not doc_class:
# Fallback to default Document class from llama_index
from llama_index.core.schema import Document
doc_class = Document
# Convert dictionaries to documents
for item in items:
if isinstance(item, dict):
result.append(doc_class.from_dict(item))
else:
# Convert documents to dictionaries
for item in items:
if hasattr(item, 'to_dict'):
result.append(item.to_dict())
return result
return (llamaindex_convert_docs_multi,)
@app.cell
def helper_function_create_df():
def create_document_dataframes(dict_from_docs):
"""
Creates a pandas DataFrame for each file in the dictionary.
Args:
dict_from_docs: Dictionary mapping filenames to lists of documents
Returns:
List of pandas DataFrames, each representing all documents from a single file
"""
dataframes = []
for filename, docs in dict_from_docs.items():
# Create a list to hold all document records for this file
file_records = []
for i, doc in enumerate(docs):
# Convert the document to a format compatible with DataFrame
if hasattr(doc, 'to_dict'):
doc_data = doc.to_dict()
elif isinstance(doc, dict):
doc_data = doc
else:
doc_data = {'content': str(doc)}
# Add document index information
doc_data['doc_index'] = i
# Add to the list of records for this file
file_records.append(doc_data)
# Create a single DataFrame for all documents in this file
if file_records:
df = pd.DataFrame(file_records)
df['filename'] = filename # Add filename as a column
dataframes.append(df)
return dataframes
def create_dataframe_previews(dataframe_list, page_size=5):
"""
Creates a list of mo.ui.dataframe components, one for each DataFrame in the input list.
Args:
dataframe_list: List of pandas DataFrames (output from create_document_dataframes)
page_size: Number of rows to show per page for each component
Returns:
List of mo.ui.dataframe components
"""
# Create a list of mo.ui.dataframe components
preview_components = []
for df in dataframe_list:
# Create a mo.ui.dataframe component for this DataFrame
preview = mo.ui.dataframe(df, page_size=page_size)
preview_components.append(preview)
return preview_components
return
@app.cell
def helper_function_chart_preparation():
import altair as alt
import numpy as np
import plotly.express as px
from sklearn.manifold import TSNE
def prepare_embedding_data(embeddings, texts, model_id=None, embedding_dimensions=None):
"""
Prepare embedding data for visualization
Args:
embeddings: List of embeddings arrays
texts: List of text strings
model_id: Embedding model ID (optional)
embedding_dimensions: Embedding dimensions (optional)
Returns:
DataFrame with processed data and metadata
"""
# Flatten embeddings (in case they're nested)
flattened_embeddings = []
for emb in embeddings:
if isinstance(emb, list) and len(emb) > 0 and isinstance(emb[0], list):
flattened_embeddings.append(emb[0]) # Take first element if nested
else:
flattened_embeddings.append(emb)
# Convert to numpy array
embedding_array = np.array(flattened_embeddings)
# Apply dimensionality reduction (t-SNE)
tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(embedding_array)-1))
reduced_embeddings = tsne.fit_transform(embedding_array)
# Create truncated texts for display
truncated_texts = [text[:50] + "..." if len(text) > 50 else text for text in texts]
# Create dataframe for visualization
df = pd.DataFrame({
"x": reduced_embeddings[:, 0],
"y": reduced_embeddings[:, 1],
"text": truncated_texts,
"full_text": texts,
"index": range(len(texts))
})
# Add metadata
metadata = {
"model_id": model_id,
"embedding_dimensions": embedding_dimensions
}
return df, metadata
def create_embedding_chart(df, metadata=None):
"""
Create an Altair chart for embedding visualization
Args:
df: DataFrame with x, y coordinates and text
metadata: Dictionary with model_id and embedding_dimensions
Returns:
Altair chart
"""
model_id = metadata.get("model_id") if metadata else None
embedding_dimensions = metadata.get("embedding_dimensions") if metadata else None
selection = alt.selection_multi(fields=['index'])
base = alt.Chart(df).encode(
x=alt.X("x:Q", title="Dimension 1"),
y=alt.Y("y:Q", title="Dimension 2"),
tooltip=["text", "index"]
)
points = base.mark_circle(size=100).encode(
color=alt.Color("index:N", legend=None),
opacity=alt.condition(selection, alt.value(1), alt.value(0.2))
).add_selection(selection) # Add this line to apply the selection
text = base.mark_text(align="left", dx=7).encode(
text="index:N"
)
return (points + text).properties(
width=700,
height=500,
title=f"Embedding Visualization{f' - Model: {model_id}' if model_id else ''}{f' ({embedding_dimensions} dimensions)' if embedding_dimensions else ''}"
).interactive()
def show_selected_text(indices, texts):
"""
Create markdown display for selected texts
Args:
indices: List of selected indices
texts: List of all texts
Returns:
Markdown string
"""
if not indices:
return "No text selected"
selected_texts = [texts[i] for i in indices if i < len(texts)]
return "\n\n".join([f"**Document {i}**:\n{text}" for i, text in zip(indices, selected_texts)])
def prepare_embedding_data_3d(embeddings, texts, model_id=None, embedding_dimensions=None):
"""
Prepare embedding data for 3D visualization
Args:
embeddings: List of embeddings arrays
texts: List of text strings
model_id: Embedding model ID (optional)
embedding_dimensions: Embedding dimensions (optional)
Returns:
DataFrame with processed data and metadata
"""
# Flatten embeddings (in case they're nested)
flattened_embeddings = []
for emb in embeddings:
if isinstance(emb, list) and len(emb) > 0 and isinstance(emb[0], list):
flattened_embeddings.append(emb[0])
else:
flattened_embeddings.append(emb)
# Convert to numpy array
embedding_array = np.array(flattened_embeddings)
# Handle the case of a single embedding differently
if len(embedding_array) == 1:
# For a single point, we don't need t-SNE, just use a fixed position
reduced_embeddings = np.array([[0.0, 0.0, 0.0]])
else:
# Apply dimensionality reduction to 3D
# Fix: Ensure perplexity is at least 1.0
perplexity_value = max(1.0, min(30, len(embedding_array)-1))
tsne = TSNE(n_components=3, random_state=42, perplexity=perplexity_value)
reduced_embeddings = tsne.fit_transform(embedding_array)
# Format texts for display
formatted_texts = []
for text in texts:
# Truncate if needed
if len(text) > 500:
text = text[:500] + "..."
# Insert line breaks for wrapping
wrapped_text = ""
for i in range(0, len(text), 50):
wrapped_text += text[i:i+50] + "<br>"
formatted_texts.append("<b>"+wrapped_text+"</b>")
# Create dataframe for visualization
df = pd.DataFrame({
"x": reduced_embeddings[:, 0],
"y": reduced_embeddings[:, 1],
"z": reduced_embeddings[:, 2],
"text": formatted_texts,
"full_text": texts,
"index": range(len(texts)),
"embedding": flattened_embeddings # Store the original embeddings for later use
})
# Add metadata
metadata = {
"model_id": model_id,
"embedding_dimensions": embedding_dimensions
}
return df, metadata
def create_3d_embedding_chart(df, metadata=None, chart_width=1200, chart_height=800, marker_size_var: int=3):
"""
Create a 3D Plotly chart for embedding visualization with proximity-based coloring
"""
model_id = metadata.get("model_id") if metadata else None
embedding_dimensions = metadata.get("embedding_dimensions") if metadata else None
# Calculate the proximity between points
from scipy.spatial.distance import pdist, squareform
# Get the coordinates as a numpy array
coords = df[['x', 'y', 'z']].values
# Calculate pairwise distances
dist_matrix = squareform(pdist(coords))
# For each point, find its average distance to all other points
avg_distances = np.mean(dist_matrix, axis=1)
# Add this to the dataframe - smaller values = closer to other points
df['proximity'] = avg_distances
# Create 3D scatter plot with proximity-based coloring
fig = px.scatter_3d(
df,
x='x',
y='y',
z='z',
# x='petal_length', # Changed from 'x' to 'petal_length'
# y='petal_width', # Changed from 'y' to 'petal_width'
# z='petal_height',
color='proximity', # Color based on proximity
color_continuous_scale='Viridis_r', # Reversed so closer points are warmer colors
hover_data=['text', 'index', 'proximity'],
labels={'x': 'Dimension 1', 'y': 'Dimension 2', 'z': 'Dimension 3', 'proximity': 'Avg Distance'},
# labels={'x': 'Dimension 1', 'y': 'Dimension 2', 'z': 'Dimension 3', 'proximity': 'Avg Distance'},
title=f"<b>3D Embedding Visualization</b>{f' - Model: <b>{model_id}</b>' if model_id else ''}{f' <i>({embedding_dimensions} dimensions)</i>' if embedding_dimensions else ''}",
text='index',
# size_max=marker_size_var
)
# Update marker size and layout
# fig.update_traces(marker=dict(size=3), selector=dict(mode='markers'))
fig.update_traces(
marker=dict(
size=marker_size_var, # Very small marker size
opacity=0.7, # Slightly transparent
symbol="diamond", # Use circle markers (other options: "square", "diamond", "cross", "x")
line=dict(
width=0.5, # Very thin border
color="white" # White outline makes small dots more visible
)
),
textfont=dict(
color="rgba(255, 255, 255, 0.3)",
size=8
),
# hovertemplate="<b>index=%{text}</b><br>%{customdata[0]}<br><br>Avg Distance=%{customdata[2]:.4f}<extra></extra>", ### Hover Changes
hovertemplate="text:<br><b>%{customdata[0]}</b><br>index: <b>%{text}</b><br><br>Avg Distance: <b>%{customdata[2]:.4f}</b><extra></extra>",
hoverinfo="text+name",
hoverlabel=dict(
bgcolor="white", # White background for hover labels
font_size=12 # Font size for hover text
),
selector=dict(type='scatter3d')
)
# Keep your existing layout settings
fig.update_layout(
scene=dict(
xaxis=dict(
title='Dimension 1',
nticks=40,
backgroundcolor="rgb(10, 10, 20, 0.1)",
gridcolor="white",
showbackground=True,
gridwidth=0.35,
zerolinecolor="white",
),
yaxis=dict(
title='Dimension 2',
nticks=40,
backgroundcolor="rgb(10, 10, 20, 0.1)",
gridcolor="white",
showbackground=True,
gridwidth=0.35,
zerolinecolor="white",
),
zaxis=dict(
title='Dimension 3',
nticks=40,
backgroundcolor="rgb(10, 10, 20, 0.1)",
gridcolor="white",
showbackground=True,
gridwidth=0.35,
zerolinecolor="white",
),
# Control camera view angle
camera=dict(
up=dict(x=0, y=0, z=1),
center=dict(x=0, y=0, z=0),
eye=dict(x=1.25, y=1.25, z=1.25),
),
aspectratio=dict(x=1, y=1, z=1),
aspectmode='data'
),
width=int(chart_width),
height=int(chart_height),
margin=dict(r=20, l=10, b=10, t=50),
paper_bgcolor="rgb(0, 0, 0)",
plot_bgcolor="rgb(0, 0, 0)",
coloraxis_colorbar=dict(
title="Average Distance",
thicknessmode="pixels", thickness=20,
lenmode="pixels", len=400,
yanchor="top", y=1,
ticks="outside",
dtick=0.1
)
)
return fig
return create_3d_embedding_chart, prepare_embedding_data_3d
@app.cell
def helper_function_text_preparation():
def convert_table_to_json_docs(df, selected_columns=None):
"""
Convert a pandas DataFrame or dictionary to a list of JSON documents.
Dynamically includes columns based on user selection.
Column names are standardized to lowercase with underscores instead of spaces
and special characters removed.
Args:
df: The DataFrame or dictionary to process
selected_columns: List of column names to include in the output documents
Returns:
list: A list of dictionaries, each representing a row as a JSON document
"""
import pandas as pd
import re
def standardize_key(key):
"""Convert a column name to lowercase with underscores instead of spaces and no special characters"""
if not isinstance(key, str):
return str(key).lower()
# Replace spaces with underscores and convert to lowercase
key = key.lower().replace(' ', '_')
# Remove special characters (keeping alphanumeric and underscores)
return re.sub(r'[^\w]', '', key)
# Handle case when input is a dictionary
if isinstance(df, dict):
# Filter the dictionary to include only selected columns
if selected_columns:
return [{standardize_key(k): df.get(k, None) for k in selected_columns}]
else:
# If no columns selected, return all key-value pairs with standardized keys
return [{standardize_key(k): v for k, v in df.items()}]
# Handle case when df is None
if df is None:
return []
# Ensure df is a DataFrame
if not isinstance(df, pd.DataFrame):
try:
df = pd.DataFrame(df)
except:
return [] # Return empty list if conversion fails
# Now check if DataFrame is empty
if df.empty:
return []
# If no columns are specifically selected, use all available columns
if not selected_columns or not isinstance(selected_columns, list) or len(selected_columns) == 0:
selected_columns = list(df.columns)
# Determine which columns exist in the DataFrame
available_columns = []
columns_lower = {col.lower(): col for col in df.columns if isinstance(col, str)}
for col in selected_columns:
if col in df.columns:
available_columns.append(col)
elif isinstance(col, str) and col.lower() in columns_lower:
available_columns.append(columns_lower[col.lower()])
# If no valid columns found, return empty list
if not available_columns:
return []
# Process rows
json_docs = []
for _, row in df.iterrows():
doc = {}
for col in available_columns:
value = row[col]
# Standardize the column name when adding to document
std_col = standardize_key(col)
doc[std_col] = None if pd.isna(value) else value
json_docs.append(doc)
return json_docs
def get_column_values(df, columns_to_include):
"""
Extract values from specified columns of a dataframe as lists.
Args:
df: A pandas DataFrame
columns_to_include: A list of column names to extract
Returns:
Dictionary with column names as keys and their values as lists
"""
result = {}
# Validate that columns exist in the dataframe
valid_columns = [col for col in columns_to_include if col in df.columns]
invalid_columns = set(columns_to_include) - set(valid_columns)
if invalid_columns:
print(f"Warning: These columns don't exist in the dataframe: {list(invalid_columns)}")
# Extract values for each valid column
for col in valid_columns:
result[col] = df[col].tolist()
return result
def get_data_in_range(doc_dict_df, index_range, columns_to_include):
"""
Extract values from specified columns of a dataframe within a given index range.
Args:
doc_dict_df: The pandas DataFrame to extract data from
index_range: An integer specifying the number of rows to include (from 0 to index_range-1)
columns_to_include: A list of column names to extract
Returns:
Dictionary with column names as keys and their values (within the index range) as lists
"""
# Validate the index range
max_index = len(doc_dict_df)
if index_range <= 0:
print(f"Warning: Invalid index range {index_range}. Must be positive.")
return {}
# Adjust index_range if it exceeds the dataframe length
if index_range > max_index:
print(f"Warning: Index range {index_range} exceeds dataframe length {max_index}. Using maximum length.")
index_range = max_index
# Slice the dataframe to get rows from 0 to index_range-1
df_subset = doc_dict_df.iloc[:index_range]
# Use the provided get_column_values function to extract column data
return get_column_values(df_subset, columns_to_include)
def get_data_in_range_triplequote(doc_dict_df, index_range, columns_to_include):
"""
Extract values from specified columns of a dataframe within a given index range.
Wraps string values with triple quotes and escapes URLs.
Args:
doc_dict_df: The pandas DataFrame to extract data from
index_range: A list of two integers specifying the start and end indices of rows to include
(e.g., [0, 10] includes rows from index 0 to 9 inclusive)
columns_to_include: A list of column names to extract
"""
# Validate the index range
start_idx, end_idx = index_range
max_index = len(doc_dict_df)
# Validate start index
if start_idx < 0:
print(f"Warning: Invalid start index {start_idx}. Using 0 instead.")
start_idx = 0
# Validate end index
if end_idx <= start_idx:
print(f"Warning: End index {end_idx} must be greater than start index {start_idx}. Using {start_idx + 1} instead.")
end_idx = start_idx + 1
# Adjust end index if it exceeds the dataframe length
if end_idx > max_index:
print(f"Warning: End index {end_idx} exceeds dataframe length {max_index}. Using maximum length.")
end_idx = max_index
# Slice the dataframe to get rows from start_idx to end_idx-1
# Using .loc with slice to preserve original indices
df_subset = doc_dict_df.iloc[start_idx:end_idx]
# Use the provided get_column_values function to extract column data
result = get_column_values(df_subset, columns_to_include)
# Process each string result to wrap in triple quotes
for col in result:
if isinstance(result[col], list):
# Create a new list with items wrapped in triple quotes
processed_items = []
for item in result[col]:
if isinstance(item, str):
# Replace http:// and https:// with escaped versions
item = item.replace("http://", "http\\://").replace("https://", "https\\://")
# processed_items.append('"""' + item + '"""')
processed_items.append(item)
else:
processed_items.append(item)
result[col] = processed_items
return result
return (get_data_in_range_triplequote,)
@app.cell
def prepare_doc_select(sentence_splitter_config):
def prepare_document_selection(node_dict):
"""
Creates document selection UI component.
Args:
node_dict: Dictionary mapping filenames to lists of documents
Returns:
mo.ui component for document selection
"""
# Calculate total number of documents across all files
total_docs = sum(len(docs) for docs in node_dict.values())
# Create a combined DataFrame of all documents for table selection
all_docs_records = []
doc_index_global = 0
for filename, docs in node_dict.items():
for i, doc in enumerate(docs):
# Convert the document to a format compatible with DataFrame
if hasattr(doc, 'to_dict'):
doc_data = doc.to_dict()
elif isinstance(doc, dict):
doc_data = doc
else:
doc_data = {'content': str(doc)}
# Add metadata
doc_data['filename'] = filename
doc_data['doc_index'] = i
doc_data['global_index'] = doc_index_global
all_docs_records.append(doc_data)
doc_index_global += 1
# Create UI component
stop_value = max(total_docs, 1)
llama_docs = mo.ui.range_slider(
start=1,
stop=stop_value,
step=1,
full_width=True,
show_value=True,
label="**Select a Range of Chunks to Visualize:**"
).form(submit_button_disabled=check_state(sentence_splitter_config.value))
return llama_docs
return (prepare_document_selection,)
@app.cell
def document_range_selection(
dict_from_nodes,
prepare_document_selection,
set_range_slider_state,
):
if dict_from_nodes is not None:
llama_docs = prepare_document_selection(dict_from_nodes)
set_range_slider_state(llama_docs)
else:
bare_dict = {}
llama_docs = prepare_document_selection(bare_dict)
return
@app.function
def create_cumulative_dataframe(dict_from_docs):
"""
Creates a cumulative DataFrame from a nested dictionary of documents.
Args:
dict_from_docs: Dictionary mapping filenames to lists of documents
Returns:
DataFrame with all documents flattened with global indices
"""
# Create a list to hold all document records
all_records = []
global_idx = 1 # Start from 1 to match range slider expectations
for filename, docs in dict_from_docs.items():
for i, doc in enumerate(docs):
# Convert the document to a dict format
if hasattr(doc, 'to_dict'):
doc_data = doc.to_dict()
elif isinstance(doc, dict):
doc_data = doc.copy()
else:
doc_data = {'content': str(doc)}
# Add additional metadata
doc_data['filename'] = filename
doc_data['doc_index'] = i
doc_data['global_index'] = global_idx
# If there's 'content' but no 'text', create a 'text' field
if 'content' in doc_data and 'text' not in doc_data:
doc_data['text'] = doc_data['content']
all_records.append(doc_data)
global_idx += 1
# Create DataFrame from all records
return pd.DataFrame(all_records)
@app.function
def create_stats(texts_dict, bordered=False, object_names=None, group_by_row=False, items_per_row=6, gap=2, label="Chunk"):
"""
Create a list of stat objects for each item in the specified dictionary.
Parameters:
- texts_dict (dict): Dictionary containing the text data
- bordered (bool): Whether the stats should be bordered
- object_names (list or tuple): Two object names to use for label and value
[label_object, value_object]
- group_by_row (bool): Whether to group stats in rows (horizontal stacks)
- items_per_row (int): Number of stat objects per row when group_by_row is True
Returns:
- object: A vertical stack of stat objects or rows of stat objects
"""
if not object_names or len(object_names) < 2:
raise ValueError("You must provide two object names as a list or tuple")
label_object = object_names[0]
value_object = object_names[1]
# Validate that both objects exist in the dictionary
if label_object not in texts_dict:
raise ValueError(f"Label object '{label_object}' not found in texts_dict")
if value_object not in texts_dict:
raise ValueError(f"Value object '{value_object}' not found in texts_dict")
# Determine how many items to process (based on the label object length)
num_items = len(texts_dict[label_object])
# Create individual stat objects
individual_stats = []
for i in range(num_items):
stat = mo.stat(
label=texts_dict[label_object][i],
value=f"{label} Number: {len(texts_dict[value_object][i])}",
bordered=bordered
)
individual_stats.append(stat)
# If grouping is not enabled, just return a vertical stack of all stats
if not group_by_row:
return mo.vstack(individual_stats, wrap=False)
# Group stats into rows based on items_per_row
rows = []
for i in range(0, num_items, items_per_row):
# Get a slice of stats for this row (up to items_per_row items)
row_stats = individual_stats[i:i+items_per_row]
# Create a horizontal stack for this row
widths = [0.35] * len(row_stats)
row = mo.hstack(row_stats, gap=gap, align="start", justify="center", widths=widths)
rows.append(row)
# Return a vertical stack of all rows
return mo.vstack(rows)
@app.cell
def prepare_chart_embeddings(
chunks_to_process,
emb_model,
emb_model_emb_dim,
get_embedding_state,
prepare_embedding_data_3d,
):
# chart_dataframe, chart_metadata = None, None
if chunks_to_process is not None and get_embedding_state() is not None:
chart_dataframe, chart_metadata = prepare_embedding_data_3d(
get_embedding_state(),
chunks_to_process,
model_id=emb_model,
embedding_dimensions=emb_model_emb_dim
)
else:
chart_dataframe, chart_metadata = None, None
return chart_dataframe, chart_metadata
@app.cell
def chart_dims():
chart_dimensions = (
mo.md('''
> **Adjust Chart Window**
{chart_height}
{chat_width}
''').batch(
chart_height = mo.ui.slider(start=500, step=30, stop=1000, label="**Height:**", value=800, show_value=True),
chat_width = mo.ui.slider(start=900, step=50, stop=1400, label="**Width:**", value=1200, show_value=True)
)
)
return (chart_dimensions,)
@app.cell
def chart_dim_values(chart_dimensions):
chart_height = chart_dimensions.value['chart_height']
chart_width = chart_dimensions.value['chat_width']
return chart_height, chart_width
@app.cell
def create_baseline_chart(
chart_dataframe,
chart_height,
chart_metadata,
chart_width,
create_3d_embedding_chart,
):
if chart_dataframe is not None and chart_metadata is not None:
emb_plot = create_3d_embedding_chart(chart_dataframe, chart_metadata, chart_width, chart_height, marker_size_var=9)
chart = mo.ui.plotly(emb_plot)
else:
emb_plot = None
chart = None
return (emb_plot,)
@app.cell
def test_query(get_chunk_state):
placeholder = """How can i use watsonx.data to perform vector search?"""
query = mo.ui.text_area(label="**Write text to check:**", full_width=True, rows=8, value=placeholder).form(show_clear_button=True, submit_button_disabled=check_state(get_chunk_state()))
return (query,)
@app.cell
def query_stack(chart_dimensions, query):
# query_stack = mo.hstack([query], justify="space-around", align="center", widths=[0.65])
query_stack = mo.hstack([query, chart_dimensions], justify="space-around", align="center", gap=15)
return (query_stack,)
@app.function
def check_state(variable):
return variable is None
@app.cell
def helper_function_add_query_to_chart():
def add_query_to_embedding_chart(existing_chart, query_coords, query_text, marker_size=12):
"""
Add a query point to an existing 3D embedding chart as a large red dot.
Args:
existing_chart: The existing plotly figure or chart data
query_coords: Dictionary with 'x', 'y', 'z' coordinates for the query point
query_text: Text of the query to display on hover
marker_size: Size of the query marker (default: 18, typically 2x other markers)
Returns:
A modified plotly figure with the query point added as a red dot
"""
import plotly.graph_objects as go
# Create a deep copy of the existing chart to avoid modifying the original
import copy
chart_copy = copy.deepcopy(existing_chart)
# Handle case where chart_copy is a dictionary or list (from mo.ui.plotly)
if isinstance(chart_copy, (dict, list)):
# Create a new plotly figure from the data
import plotly.graph_objects as go
if isinstance(chart_copy, list):
# If it's a list, assume it's a list of traces
fig = go.Figure(data=chart_copy)
else:
# If it's a dict with 'data' and 'layout'
fig = go.Figure(data=chart_copy.get('data', []), layout=chart_copy.get('layout', {}))
chart_copy = fig
# Create the query trace
query_trace = go.Scatter3d(
x=[query_coords['x']],
y=[query_coords['y']],
z=[query_coords['z']],
mode='markers',
name='Query',
marker=dict(
size=marker_size, # Typically 2x the size of other markers
color='red', # Bright red color
symbol='circle', # Circle shape
opacity=0.70, # Fully opaque
line=dict(
width=1, # Thin white border
color='white'
)
),
# text=['Query: ' + query_text],
text=['<b>Query:</b><br>' + '<br>'.join([query_text[i:i+50] for i in range(0, len(query_text), 50)])], ### Text Wrapping
hoverinfo="text+name"
)
# Add the query trace to the chart copy
chart_copy.add_trace(query_trace)
return chart_copy
def get_query_coordinates(reference_embeddings=None, query_embedding=None):
"""
Calculate appropriate coordinates for a query point based on reference embeddings.
This function handles several scenarios:
1. If both reference embeddings and query embedding are provided, it places the
query near similar documents.
2. If only reference embeddings are provided, it places the query at a visible
location near the center of the chart.
3. If neither are provided, it returns default origin coordinates.
Args:
reference_embeddings: DataFrame with x, y, z coordinates from the main chart
query_embedding: The embedding vector of the query
Returns:
Dictionary with x, y, z coordinates for the query point
"""
import numpy as np
# Default coordinates (origin with slight offset)
default_coords = {'x': 0.0, 'y': 0.0, 'z': 0.0}
# If we don't have reference embeddings, return default
if reference_embeddings is None or len(reference_embeddings) == 0:
return default_coords
# If we have reference embeddings but no query embedding,
# position at a visible location near the center
if query_embedding is None:
center_coords = {
'x': reference_embeddings['x'].mean(),
'y': reference_embeddings['y'].mean(),
'z': reference_embeddings['z'].mean()
}
return center_coords
# If we have both reference embeddings and query embedding,
# try to position near similar documents
try:
from sklearn.metrics.pairwise import cosine_similarity
# Check if original embeddings are in the dataframe
if 'embedding' in reference_embeddings.columns:
# Get all document embeddings as a 2D array
if isinstance(reference_embeddings['embedding'].iloc[0], list):
doc_embeddings = np.array(reference_embeddings['embedding'].tolist())
else:
doc_embeddings = np.array([emb for emb in reference_embeddings['embedding'].values])
# Reshape query embedding for comparison
query_emb_array = np.array(query_embedding)
if query_emb_array.ndim == 1:
query_emb_array = query_emb_array.reshape(1, -1)
# Calculate cosine similarities
similarities = cosine_similarity(query_emb_array, doc_embeddings)[0]
# Find the closest document
closest_idx = np.argmax(similarities)
# Use the position of the closest document, with slight offset for visibility
query_coords = {
'x': reference_embeddings['x'].iloc[closest_idx] + 0.2,
'y': reference_embeddings['y'].iloc[closest_idx] + 0.2,
'z': reference_embeddings['z'].iloc[closest_idx] + 0.2
}
return query_coords
except Exception as e:
print(f"Error positioning query near similar documents: {e}")
# Fallback to center position if similarity calculation fails
center_coords = {
'x': reference_embeddings['x'].mean(),
'y': reference_embeddings['y'].mean(),
'z': reference_embeddings['z'].mean()
}
return center_coords
return add_query_to_embedding_chart, get_query_coordinates
@app.cell
def combined_chart_visualization(
add_query_to_embedding_chart,
chart_dataframe,
emb_plot,
embedding,
get_query_coordinates,
get_query_state,
query,
set_chart_state,
set_query_state,
):
# Usage with highlight_closest=True
if chart_dataframe is not None and query.value:
with mo.status.spinner(title="Embedding Query...", remove_on_exit=True) as _spinner:
query_emb = embedding.embed_documents([query.value])
set_query_state(query_emb)
_spinner.update("Preparing Query Coordinates") # --- --- ---
time.sleep(1.0)
# Get appropriate coordinates for the query
query_coords = get_query_coordinates(
reference_embeddings=chart_dataframe,
query_embedding=get_query_state()
)
_spinner.update("Adding Query to Chart") # --- --- ---
time.sleep(1.0)
# Add the query to the chart with closest points highlighted
result = add_query_to_embedding_chart(
existing_chart=emb_plot,
query_coords=query_coords,
query_text=query.value,
)
chart_with_query = result
_spinner.update("Preparing Visualization") # --- --- ---
time.sleep(1.0)
# Create the visualization
combined_viz = mo.ui.plotly(chart_with_query)
set_chart_state(combined_viz)
_spinner.update("Done") # --- --- ---
else:
combined_viz = None
return
@app.cell
def _():
get_range_slider_state, set_range_slider_state = mo.state(None)
return get_range_slider_state, set_range_slider_state
@app.cell
def _(get_range_slider_state):
if get_range_slider_state() is not None:
document_range_stack = get_range_slider_state()
else:
document_range_stack = None
return (document_range_stack,)
@app.cell
def _():
get_chart_state, set_chart_state = mo.state(None)
return get_chart_state, set_chart_state
@app.cell
def _(get_chart_state, query):
if query.value is not None:
chart_visualization = get_chart_state()
else:
chart_visualization = None
return (chart_visualization,)
@app.cell
def c(document_range_stack):
chart_range_selection = mo.hstack([document_range_stack], justify="space-around", align="center", widths=[0.65])
return (chart_range_selection,)
if __name__ == "__main__":
app.run()
|