Create visualizer_app.py
Browse files- visualizer_app.py +2056 -0
visualizer_app.py
ADDED
@@ -0,0 +1,2056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import marimo
|
2 |
+
|
3 |
+
__generated_with = "0.13.0"
|
4 |
+
app = marimo.App(width="full")
|
5 |
+
|
6 |
+
with app.setup:
|
7 |
+
# Initialization code that runs before all other cells
|
8 |
+
import marimo as mo
|
9 |
+
from typing import Dict, Optional, List, Union, Any
|
10 |
+
from ibm_watsonx_ai import APIClient, Credentials
|
11 |
+
from pathlib import Path
|
12 |
+
import pandas as pd
|
13 |
+
import mimetypes
|
14 |
+
import requests
|
15 |
+
import zipfile
|
16 |
+
import tempfile
|
17 |
+
import base64
|
18 |
+
import polars
|
19 |
+
import time
|
20 |
+
import json
|
21 |
+
import ast
|
22 |
+
import os
|
23 |
+
import io
|
24 |
+
import re
|
25 |
+
|
26 |
+
def get_iam_token(api_key):
|
27 |
+
return requests.post(
|
28 |
+
'https://iam.cloud.ibm.com/identity/token',
|
29 |
+
headers={'Content-Type': 'application/x-www-form-urlencoded'},
|
30 |
+
data={'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': api_key}
|
31 |
+
).json()['access_token']
|
32 |
+
|
33 |
+
def setup_task_credentials(client):
|
34 |
+
# Get existing task credentials
|
35 |
+
existing_credentials = client.task_credentials.get_details()
|
36 |
+
|
37 |
+
# Delete existing credentials if any
|
38 |
+
if "resources" in existing_credentials and existing_credentials["resources"]:
|
39 |
+
for cred in existing_credentials["resources"]:
|
40 |
+
cred_id = client.task_credentials.get_id(cred)
|
41 |
+
client.task_credentials.delete(cred_id)
|
42 |
+
|
43 |
+
# Store new credentials
|
44 |
+
return client.task_credentials.store()
|
45 |
+
|
46 |
+
def get_cred_value(key, creds_var_name="baked_in_creds", default=""): ### Helper for working with preset credentials
|
47 |
+
"""
|
48 |
+
Helper function to safely get a value from a credentials dictionary.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
key: The key to look up in the credentials dictionary.
|
52 |
+
creds_var_name: The variable name of the credentials dictionary.
|
53 |
+
default: The default value to return if the key is not found.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
The value from the credentials dictionary if it exists and contains the key,
|
57 |
+
otherwise returns the default value.
|
58 |
+
"""
|
59 |
+
# Check if the credentials variable exists in globals
|
60 |
+
if creds_var_name in globals():
|
61 |
+
creds_dict = globals()[creds_var_name]
|
62 |
+
if isinstance(creds_dict, dict) and key in creds_dict:
|
63 |
+
return creds_dict[key]
|
64 |
+
return default
|
65 |
+
|
66 |
+
@app.cell
|
67 |
+
def client_variables(client_instantiation_form):
|
68 |
+
if client_instantiation_form.value:
|
69 |
+
client_setup = client_instantiation_form.value
|
70 |
+
else:
|
71 |
+
client_setup = None
|
72 |
+
|
73 |
+
### Extract Credential Variables:
|
74 |
+
if client_setup is not None:
|
75 |
+
wx_url = client_setup["wx_region"]
|
76 |
+
wx_api_key = client_setup["wx_api_key"].strip()
|
77 |
+
os.environ["WATSONX_APIKEY"] = wx_api_key
|
78 |
+
|
79 |
+
if client_setup["project_id"] is not None:
|
80 |
+
project_id = client_setup["project_id"].strip()
|
81 |
+
else:
|
82 |
+
project_id = None
|
83 |
+
|
84 |
+
if client_setup["space_id"] is not None:
|
85 |
+
space_id = client_setup["space_id"].strip()
|
86 |
+
else:
|
87 |
+
space_id = None
|
88 |
+
|
89 |
+
else:
|
90 |
+
os.environ["WATSONX_APIKEY"] = ""
|
91 |
+
project_id = None
|
92 |
+
space_id = None
|
93 |
+
wx_api_key = None
|
94 |
+
wx_url = None
|
95 |
+
return client_setup, project_id, space_id, wx_api_key, wx_url
|
96 |
+
|
97 |
+
|
98 |
+
@app.cell
|
99 |
+
def _(client_setup, wx_api_key):
|
100 |
+
if client_setup:
|
101 |
+
token = get_iam_token(wx_api_key)
|
102 |
+
else:
|
103 |
+
token = None
|
104 |
+
return
|
105 |
+
|
106 |
+
@app.cell
|
107 |
+
def _():
|
108 |
+
baked_in_creds = {
|
109 |
+
"purpose": "",
|
110 |
+
"api_key": "",
|
111 |
+
"project_id": "",
|
112 |
+
"space_id": "",
|
113 |
+
}
|
114 |
+
return baked_in_creds
|
115 |
+
|
116 |
+
|
117 |
+
@app.cell
|
118 |
+
def client_instantiation(
|
119 |
+
client_setup,
|
120 |
+
project_id,
|
121 |
+
space_id,
|
122 |
+
wx_api_key,
|
123 |
+
wx_url,
|
124 |
+
):
|
125 |
+
### Instantiate the watsonx.ai client
|
126 |
+
if client_setup:
|
127 |
+
wx_credentials = Credentials(
|
128 |
+
url=wx_url,
|
129 |
+
api_key=wx_api_key
|
130 |
+
)
|
131 |
+
|
132 |
+
if project_id:
|
133 |
+
project_client = APIClient(credentials=wx_credentials, project_id=project_id)
|
134 |
+
else:
|
135 |
+
project_client = None
|
136 |
+
|
137 |
+
if space_id:
|
138 |
+
deployment_client = APIClient(credentials=wx_credentials, space_id=space_id)
|
139 |
+
else:
|
140 |
+
deployment_client = None
|
141 |
+
|
142 |
+
if project_client is not None:
|
143 |
+
task_credentials_details = setup_task_credentials(project_client)
|
144 |
+
else:
|
145 |
+
task_credentials_details = setup_task_credentials(deployment_client)
|
146 |
+
else:
|
147 |
+
wx_credentials = None
|
148 |
+
project_client = None
|
149 |
+
deployment_client = None
|
150 |
+
task_credentials_details = None
|
151 |
+
|
152 |
+
client_status = mo.md("### Client Instantiation Status will turn Green When Ready")
|
153 |
+
|
154 |
+
if project_client is not None or deployment_client is not None:
|
155 |
+
client_callout_kind = "success"
|
156 |
+
else:
|
157 |
+
client_callout_kind = "neutral"
|
158 |
+
return (
|
159 |
+
client_callout_kind,
|
160 |
+
client_status,
|
161 |
+
deployment_client,
|
162 |
+
project_client,
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
@app.cell
|
167 |
+
def _():
|
168 |
+
mo.md(
|
169 |
+
r"""
|
170 |
+
#watsonx.ai Embedding Visualizer - Marimo Notebook
|
171 |
+
|
172 |
+
#### This marimo notebook can be used to develop a more intuitive understanding of how vector embeddings work by creating a 3D visualization of vector embeddings based on chunked PDF document pages.
|
173 |
+
|
174 |
+
#### It can also serve as a useful tool for identifying gaps in model choice, chunking strategy or contents used in building collections by showing how far you are from what you want.
|
175 |
+
<br>
|
176 |
+
|
177 |
+
/// admonition
|
178 |
+
Created by ***Milan Mrdenovic*** [[email protected]] for IBM Ecosystem Client Engineering, NCEE - ***version 5.3** - 20.04.2025*
|
179 |
+
///
|
180 |
+
|
181 |
+
|
182 |
+
>Licensed under apache 2.0, users hold full accountability for any use or modification of the code.
|
183 |
+
><br>This asset is part of a set meant to support IBMers, IBM Partners, Clients in developing understanding of how to better utilize various watsonx features and generative AI as a subject matter.
|
184 |
+
|
185 |
+
<br>
|
186 |
+
"""
|
187 |
+
)
|
188 |
+
return
|
189 |
+
|
190 |
+
|
191 |
+
@app.cell
|
192 |
+
def _():
|
193 |
+
mo.md("""###Part 1 - Client Setup, File Preparation and Chunking""")
|
194 |
+
return
|
195 |
+
|
196 |
+
|
197 |
+
@app.cell
|
198 |
+
def accordion_client_setup(client_selector, client_stack):
|
199 |
+
ui_accordion_part_1_1 = mo.accordion(
|
200 |
+
{
|
201 |
+
"Instantiate Client": mo.vstack([client_stack, client_selector], align="center"),
|
202 |
+
}
|
203 |
+
)
|
204 |
+
|
205 |
+
ui_accordion_part_1_1
|
206 |
+
return
|
207 |
+
|
208 |
+
|
209 |
+
@app.cell
|
210 |
+
def accordion_file_upload(select_stack):
|
211 |
+
ui_accordion_part_1_2 = mo.accordion(
|
212 |
+
{
|
213 |
+
"Select Model & Upload Files": select_stack
|
214 |
+
}
|
215 |
+
)
|
216 |
+
|
217 |
+
ui_accordion_part_1_2
|
218 |
+
return
|
219 |
+
|
220 |
+
|
221 |
+
@app.cell
|
222 |
+
def loaded_texts(
|
223 |
+
create_temp_files_from_uploads,
|
224 |
+
file_loader,
|
225 |
+
pdf_reader,
|
226 |
+
run_upload_button,
|
227 |
+
set_text_state,
|
228 |
+
):
|
229 |
+
if file_loader.value is not None and run_upload_button.value:
|
230 |
+
filepaths = create_temp_files_from_uploads(file_loader.value)
|
231 |
+
loaded_texts = load_pdf_data_with_progress(pdf_reader, filepaths, file_loader.value, show_progress=True)
|
232 |
+
|
233 |
+
set_text_state(loaded_texts)
|
234 |
+
else:
|
235 |
+
filepaths = None
|
236 |
+
loaded_texts = None
|
237 |
+
return
|
238 |
+
|
239 |
+
|
240 |
+
@app.cell
|
241 |
+
def accordion_chunker_setup(chunker_setup):
|
242 |
+
ui_accordion_part_1_3 = mo.accordion(
|
243 |
+
{
|
244 |
+
"Chunker Setup": chunker_setup
|
245 |
+
}
|
246 |
+
)
|
247 |
+
|
248 |
+
ui_accordion_part_1_3
|
249 |
+
return
|
250 |
+
|
251 |
+
|
252 |
+
@app.cell
|
253 |
+
def chunk_documents_to_nodes(
|
254 |
+
get_text_state,
|
255 |
+
sentence_splitter,
|
256 |
+
sentence_splitter_config,
|
257 |
+
set_chunk_state,
|
258 |
+
):
|
259 |
+
if sentence_splitter_config.value and sentence_splitter and get_text_state() is not None:
|
260 |
+
chunked_texts = chunk_documents(get_text_state(), sentence_splitter, show_progress=True)
|
261 |
+
set_chunk_state(chunked_texts)
|
262 |
+
else:
|
263 |
+
chunked_texts = None
|
264 |
+
return (chunked_texts,)
|
265 |
+
|
266 |
+
|
267 |
+
@app.cell
|
268 |
+
def _():
|
269 |
+
mo.md(r"""###Part 2 - Query Setup and Visualization""")
|
270 |
+
return
|
271 |
+
|
272 |
+
|
273 |
+
@app.cell
|
274 |
+
def accordion_chunk_range(chart_range_selection):
|
275 |
+
ui_accordion_part_2_1 = mo.accordion(
|
276 |
+
{
|
277 |
+
"Chunk Range Selection": chart_range_selection
|
278 |
+
}
|
279 |
+
)
|
280 |
+
ui_accordion_part_2_1
|
281 |
+
return
|
282 |
+
|
283 |
+
|
284 |
+
@app.cell
|
285 |
+
def chunk_embedding(
|
286 |
+
chunks_to_process,
|
287 |
+
embedding,
|
288 |
+
sentence_splitter_config,
|
289 |
+
set_embedding_state,
|
290 |
+
):
|
291 |
+
if sentence_splitter_config.value is not None and chunks_to_process is not None:
|
292 |
+
with mo.status.spinner(title="Embedding Documents...", remove_on_exit=True) as _spinner:
|
293 |
+
output_embeddings = embedding.embed_documents(chunks_to_process)
|
294 |
+
_spinner.update("Almost Done")
|
295 |
+
time.sleep(1.5)
|
296 |
+
set_embedding_state(output_embeddings)
|
297 |
+
_spinner.update("Documents Embedded")
|
298 |
+
else:
|
299 |
+
output_embeddings = None
|
300 |
+
return
|
301 |
+
|
302 |
+
|
303 |
+
@app.cell
|
304 |
+
def preview_chunks(chunks_dict):
|
305 |
+
if chunks_dict is not None:
|
306 |
+
stats = create_stats(chunks_dict,
|
307 |
+
bordered=True,
|
308 |
+
object_names=['text','text'],
|
309 |
+
group_by_row=True,
|
310 |
+
items_per_row=5,
|
311 |
+
gap=1,
|
312 |
+
label="Chunk")
|
313 |
+
ui_chunk_viewer = mo.accordion(
|
314 |
+
{
|
315 |
+
"View Chunks": stats,
|
316 |
+
}
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
ui_chunk_viewer = None
|
320 |
+
|
321 |
+
ui_chunk_viewer
|
322 |
+
return
|
323 |
+
|
324 |
+
|
325 |
+
@app.cell
|
326 |
+
def accordion_query_view(chart_visualization, query_stack):
|
327 |
+
ui_accordion_part_2_2 = mo.accordion(
|
328 |
+
{
|
329 |
+
"Query": mo.vstack([query_stack, mo.hstack([chart_visualization])], align="center", gap=3)
|
330 |
+
}
|
331 |
+
)
|
332 |
+
ui_accordion_part_2_2
|
333 |
+
return
|
334 |
+
|
335 |
+
|
336 |
+
@app.cell
|
337 |
+
def chunker_setup(sentence_splitter_config):
|
338 |
+
chunker_setup = mo.hstack([sentence_splitter_config], justify="space-around", align="center", widths=[0.55])
|
339 |
+
return (chunker_setup,)
|
340 |
+
|
341 |
+
|
342 |
+
@app.cell
|
343 |
+
def file_and_model_select(
|
344 |
+
file_loader,
|
345 |
+
get_embedding_model_list,
|
346 |
+
run_upload_button,
|
347 |
+
):
|
348 |
+
select_stack = mo.hstack([get_embedding_model_list(), mo.vstack([file_loader, run_upload_button], align="center")], justify="space-around", align="center", widths=[0.3,0.3])
|
349 |
+
return (select_stack,)
|
350 |
+
|
351 |
+
|
352 |
+
@app.cell
|
353 |
+
def client_instantiation_form():
|
354 |
+
# Endpoints
|
355 |
+
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
|
356 |
+
regions = {
|
357 |
+
"US": "https://us-south.ml.cloud.ibm.com",
|
358 |
+
"EU": "https://eu-de.ml.cloud.ibm.com",
|
359 |
+
"GB": "https://eu-gb.ml.cloud.ibm.com",
|
360 |
+
"JP": "https://jp-tok.ml.cloud.ibm.com",
|
361 |
+
"AU": "https://au-syd.ml.cloud.ibm.com",
|
362 |
+
"CA": "https://ca-tor.ml.cloud.ibm.com"
|
363 |
+
}
|
364 |
+
|
365 |
+
# Create a form with multiple elements
|
366 |
+
client_instantiation_form = (
|
367 |
+
mo.md('''
|
368 |
+
###**watsonx.ai credentials:**
|
369 |
+
|
370 |
+
{wx_region}
|
371 |
+
|
372 |
+
{wx_api_key}
|
373 |
+
|
374 |
+
{project_id}
|
375 |
+
|
376 |
+
{space_id}
|
377 |
+
''')
|
378 |
+
.batch(
|
379 |
+
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
|
380 |
+
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:",
|
381 |
+
kind="password", value=get_cred_value('api_key', creds_var_name='baked_in_creds')),
|
382 |
+
project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:",
|
383 |
+
kind="text", value=get_cred_value('project_id', creds_var_name='baked_in_creds')),
|
384 |
+
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:",
|
385 |
+
kind="text", value=get_cred_value('space_id', creds_var_name='baked_in_creds'))
|
386 |
+
,)
|
387 |
+
.form(show_clear_button=True, bordered=False)
|
388 |
+
)
|
389 |
+
return (client_instantiation_form,)
|
390 |
+
|
391 |
+
|
392 |
+
@app.cell
|
393 |
+
def instantiation_status(
|
394 |
+
client_callout_kind,
|
395 |
+
client_instantiation_form,
|
396 |
+
client_status,
|
397 |
+
):
|
398 |
+
client_callout = mo.callout(client_status, kind=client_callout_kind)
|
399 |
+
client_stack = mo.hstack([client_instantiation_form, client_callout], align="center", justify="space-around", gap=10)
|
400 |
+
return (client_stack,)
|
401 |
+
|
402 |
+
|
403 |
+
@app.cell
|
404 |
+
def client_selector(deployment_client, project_client):
|
405 |
+
if deployment_client is not None:
|
406 |
+
client_options = {"Deployment Client":deployment_client}
|
407 |
+
|
408 |
+
elif project_client is not None:
|
409 |
+
client_options = {"Project Client":project_client}
|
410 |
+
|
411 |
+
elif project_client is not None and deployment_client is not None:
|
412 |
+
client_options = {"Project Client":project_client,"Deployment Client":deployment_client}
|
413 |
+
|
414 |
+
else:
|
415 |
+
client_options = {"No Client": "Instantiate a Client"}
|
416 |
+
|
417 |
+
default_client = next(iter(client_options))
|
418 |
+
client_selector = mo.ui.dropdown(client_options, value=default_client, label="**Select your active client:**")
|
419 |
+
|
420 |
+
return (client_selector,)
|
421 |
+
|
422 |
+
|
423 |
+
@app.cell
|
424 |
+
def active_client(client_selector):
|
425 |
+
client = client_selector.value
|
426 |
+
return (client,)
|
427 |
+
|
428 |
+
|
429 |
+
@app.cell
|
430 |
+
def emb_model_selection(client, set_embedding_model_list):
|
431 |
+
if client:
|
432 |
+
model_specs = client.foundation_models.get_embeddings_model_specs()
|
433 |
+
# model_specs = client.foundation_models.get_model_specs()
|
434 |
+
resources = model_specs["resources"]
|
435 |
+
# Define embedding models reference data
|
436 |
+
embedding_models = {
|
437 |
+
"ibm/granite-embedding-107m-multilingual": {"max_tokens": 512, "embedding_dimensions": 384},
|
438 |
+
"ibm/granite-embedding-278m-multilingual": {"max_tokens": 512, "embedding_dimensions": 768},
|
439 |
+
"ibm/slate-125m-english-rtrvr-v2": {"max_tokens": 512, "embedding_dimensions": 768},
|
440 |
+
"ibm/slate-125m-english-rtrvr": {"max_tokens": 512, "embedding_dimensions": 768},
|
441 |
+
"ibm/slate-30m-english-rtrvr-v2": {"max_tokens": 512, "embedding_dimensions": 384},
|
442 |
+
"ibm/slate-30m-english-rtrvr": {"max_tokens": 512, "embedding_dimensions": 384},
|
443 |
+
"sentence-transformers/all-minilm-l6-v2": {"max_tokens": 128, "embedding_dimensions": 384},
|
444 |
+
"sentence-transformers/all-minilm-l12-v2": {"max_tokens": 128, "embedding_dimensions": 384},
|
445 |
+
"intfloat/multilingual-e5-large": {"max_tokens": 512, "embedding_dimensions": 1024}
|
446 |
+
}
|
447 |
+
|
448 |
+
# Get model IDs from resources
|
449 |
+
model_id_list = []
|
450 |
+
for resource in resources:
|
451 |
+
model_id_list.append(resource["model_id"])
|
452 |
+
|
453 |
+
# Create enhanced model data for the table
|
454 |
+
embedding_model_data = []
|
455 |
+
for model_id in model_id_list:
|
456 |
+
model_entry = {"model_id": model_id}
|
457 |
+
|
458 |
+
# Add properties if model exists in our reference, otherwise use 0
|
459 |
+
if model_id in embedding_models:
|
460 |
+
model_entry["max_tokens"] = embedding_models[model_id]["max_tokens"]
|
461 |
+
model_entry["embedding_dimensions"] = embedding_models[model_id]["embedding_dimensions"]
|
462 |
+
else:
|
463 |
+
model_entry["max_tokens"] = 0
|
464 |
+
model_entry["embedding_dimensions"] = 0
|
465 |
+
|
466 |
+
embedding_model_data.append(model_entry)
|
467 |
+
|
468 |
+
embedding_model_selection = mo.ui.table(
|
469 |
+
embedding_model_data,
|
470 |
+
selection="single", # Only allow selecting one row
|
471 |
+
label="Select an embedding model to use.",
|
472 |
+
page_size=30,
|
473 |
+
initial_selection=[1]
|
474 |
+
)
|
475 |
+
set_embedding_model_list(embedding_model_selection)
|
476 |
+
else:
|
477 |
+
default_model_data = [{
|
478 |
+
"model_id": "ibm/granite-embedding-107m-multilingual",
|
479 |
+
"max_tokens": 512,
|
480 |
+
"embedding_dimensions": 384
|
481 |
+
}]
|
482 |
+
|
483 |
+
set_embedding_model_list(create_emb_model_selection_table(default_model_data, initial_selection=0, selection_type="single", label="Select a model to use."))
|
484 |
+
return
|
485 |
+
|
486 |
+
|
487 |
+
@app.function
|
488 |
+
def create_emb_model_selection_table(model_data, initial_selection=0, selection_type="single", label="Select a model to use."):
|
489 |
+
embedding_model_selection = mo.ui.table(
|
490 |
+
model_data,
|
491 |
+
selection=selection_type, # Only allow selecting one row
|
492 |
+
label=label,
|
493 |
+
page_size=30,
|
494 |
+
initial_selection=[initial_selection]
|
495 |
+
)
|
496 |
+
return embedding_model_selection
|
497 |
+
|
498 |
+
|
499 |
+
@app.cell
|
500 |
+
def embedding_model():
|
501 |
+
get_embedding_model_list, set_embedding_model_list = mo.state(None)
|
502 |
+
return get_embedding_model_list, set_embedding_model_list
|
503 |
+
|
504 |
+
|
505 |
+
@app.cell
|
506 |
+
def emb_model_parameters(emb_model_max_tk):
|
507 |
+
from ibm_watsonx_ai.foundation_models import Embeddings
|
508 |
+
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames as EmbedParams
|
509 |
+
|
510 |
+
embed_params = {
|
511 |
+
EmbedParams.TRUNCATE_INPUT_TOKENS: emb_model_max_tk,
|
512 |
+
EmbedParams.RETURN_OPTIONS: {
|
513 |
+
'input_text': True
|
514 |
+
}
|
515 |
+
}
|
516 |
+
return Embeddings, embed_params
|
517 |
+
|
518 |
+
|
519 |
+
@app.cell
|
520 |
+
def emb_model_state(get_embedding_model_list):
|
521 |
+
embedding_model = get_embedding_model_list()
|
522 |
+
return (embedding_model,)
|
523 |
+
|
524 |
+
|
525 |
+
@app.cell
|
526 |
+
def emb_model_setup(embedding_model):
|
527 |
+
emb_model = embedding_model.value[0]['model_id']
|
528 |
+
emb_model_max_tk = embedding_model.value[0]['max_tokens']
|
529 |
+
emb_model_emb_dim = embedding_model.value[0]['embedding_dimensions']
|
530 |
+
return emb_model, emb_model_emb_dim, emb_model_max_tk
|
531 |
+
|
532 |
+
|
533 |
+
@app.cell
|
534 |
+
def emb_model_instantiation(Embeddings, client, emb_model, embed_params):
|
535 |
+
if client is not None:
|
536 |
+
embedding = Embeddings(
|
537 |
+
model_id=emb_model,
|
538 |
+
api_client=client,
|
539 |
+
params=embed_params,
|
540 |
+
batch_size=1000,
|
541 |
+
concurrency_limit=10
|
542 |
+
)
|
543 |
+
else:
|
544 |
+
embedding = None
|
545 |
+
return (embedding,)
|
546 |
+
|
547 |
+
|
548 |
+
@app.cell
|
549 |
+
def _():
|
550 |
+
get_embedding_state, set_embedding_state = mo.state(None)
|
551 |
+
return get_embedding_state, set_embedding_state
|
552 |
+
|
553 |
+
|
554 |
+
@app.cell
|
555 |
+
def _():
|
556 |
+
get_query_state, set_query_state = mo.state(None)
|
557 |
+
return get_query_state, set_query_state
|
558 |
+
|
559 |
+
|
560 |
+
@app.cell
|
561 |
+
def file_loader_input():
|
562 |
+
file_loader = mo.ui.file(
|
563 |
+
kind="area",
|
564 |
+
filetypes=[".pdf"],
|
565 |
+
label=" Load .pdf files ",
|
566 |
+
multiple=True
|
567 |
+
)
|
568 |
+
return (file_loader,)
|
569 |
+
|
570 |
+
|
571 |
+
@app.cell
|
572 |
+
def file_loader_run(file_loader):
|
573 |
+
if file_loader.value is not None:
|
574 |
+
run_upload_button = mo.ui.run_button(label="Load Files")
|
575 |
+
else:
|
576 |
+
run_upload_button = mo.ui.run_button(disabled=True, label="Load Files")
|
577 |
+
return (run_upload_button,)
|
578 |
+
|
579 |
+
|
580 |
+
@app.cell
|
581 |
+
def helper_function_tempfiles():
|
582 |
+
def create_temp_files_from_uploads(upload_results) -> List[str]:
|
583 |
+
"""
|
584 |
+
Creates temporary files from a tuple of FileUploadResults objects and returns their paths.
|
585 |
+
Args:
|
586 |
+
upload_results: Object containing a value attribute that is a tuple of FileUploadResults
|
587 |
+
Returns:
|
588 |
+
List of temporary file paths
|
589 |
+
"""
|
590 |
+
temp_file_paths = []
|
591 |
+
|
592 |
+
# Get the number of items in the tuple
|
593 |
+
num_items = len(upload_results)
|
594 |
+
|
595 |
+
# Process each item by index
|
596 |
+
for i in range(num_items):
|
597 |
+
result = upload_results[i] # Get item by index
|
598 |
+
|
599 |
+
# Create a temporary file with the original filename
|
600 |
+
temp_dir = tempfile.gettempdir()
|
601 |
+
file_name = result.name
|
602 |
+
temp_path = os.path.join(temp_dir, file_name)
|
603 |
+
# Write the contents to the temp file
|
604 |
+
with open(temp_path, 'wb') as temp_file:
|
605 |
+
temp_file.write(result.contents)
|
606 |
+
# Add the path to our list
|
607 |
+
temp_file_paths.append(temp_path)
|
608 |
+
|
609 |
+
return temp_file_paths
|
610 |
+
|
611 |
+
def cleanup_temp_files(temp_file_paths: List[str]) -> None:
|
612 |
+
"""Delete temporary files after use."""
|
613 |
+
for path in temp_file_paths:
|
614 |
+
if os.path.exists(path):
|
615 |
+
os.unlink(path)
|
616 |
+
return (create_temp_files_from_uploads,)
|
617 |
+
|
618 |
+
|
619 |
+
@app.function
|
620 |
+
def load_pdf_data_with_progress(pdf_reader, filepaths, file_loader_value, show_progress=True):
|
621 |
+
"""
|
622 |
+
Loads PDF data for each file path and organizes results by original filename.
|
623 |
+
Args:
|
624 |
+
pdf_reader: The PyMuPDFReader instance
|
625 |
+
filepaths: List of temporary file paths
|
626 |
+
file_loader_value: The original upload results value containing file information
|
627 |
+
show_progress: Whether to show a progress bar during loading (default: False)
|
628 |
+
Returns:
|
629 |
+
Dictionary mapping original filenames to their loaded text content
|
630 |
+
"""
|
631 |
+
results = {}
|
632 |
+
|
633 |
+
# Process files with or without progress bar
|
634 |
+
if show_progress:
|
635 |
+
import marimo as mo
|
636 |
+
# Use progress bar with the length of filepaths as total
|
637 |
+
with mo.status.progress_bar(
|
638 |
+
total=len(filepaths),
|
639 |
+
title="Loading PDFs",
|
640 |
+
subtitle="Processing documents...",
|
641 |
+
completion_title="PDF Loading Complete",
|
642 |
+
completion_subtitle=f"{len(filepaths)} documents processed",
|
643 |
+
remove_on_exit=True
|
644 |
+
) as bar:
|
645 |
+
# Process each file path
|
646 |
+
for i, file_path in enumerate(filepaths):
|
647 |
+
|
648 |
+
original_file_name = file_loader_value[i].name
|
649 |
+
bar.update(subtitle=f"Processing {original_file_name}...")
|
650 |
+
loaded_text = pdf_reader.load_data(file_path=file_path, metadata=True)
|
651 |
+
|
652 |
+
# Store the result with the original filename as the key
|
653 |
+
results[original_file_name] = loaded_text
|
654 |
+
# Update progress bar
|
655 |
+
bar.update(increment=1)
|
656 |
+
else:
|
657 |
+
# Original logic without progress bar
|
658 |
+
for i, file_path in enumerate(filepaths):
|
659 |
+
original_file_name = file_loader_value[i].name
|
660 |
+
loaded_text = pdf_reader.load_data(file_path=file_path, metadata=True)
|
661 |
+
results[original_file_name] = loaded_text
|
662 |
+
|
663 |
+
return results
|
664 |
+
|
665 |
+
|
666 |
+
@app.cell
|
667 |
+
def file_readers():
|
668 |
+
from llama_index.readers.file import PyMuPDFReader
|
669 |
+
from llama_index.readers.file import FlatReader
|
670 |
+
from llama_index.core.node_parser import SentenceSplitter
|
671 |
+
|
672 |
+
### File Readers
|
673 |
+
pdf_reader = PyMuPDFReader()
|
674 |
+
# flat_file_reader = FlatReader()
|
675 |
+
return SentenceSplitter, pdf_reader
|
676 |
+
|
677 |
+
|
678 |
+
@app.cell
|
679 |
+
def sentence_splitter_setup():
|
680 |
+
### Chunker Setup
|
681 |
+
sentence_splitter_config = (
|
682 |
+
mo.md('''
|
683 |
+
###**Chunking Setup:**
|
684 |
+
|
685 |
+
> Unless you want to do some advanced sentence splitting, it's best to stick to adjusting only the chunk size and overlap. Changing the other settings might result in unexpected results.
|
686 |
+
|
687 |
+
Separator value is set to **" "** by default, while the paragraph separator is **"\\n\\n\\n"**.
|
688 |
+
|
689 |
+
{chunk_size} {chunk_overlap}
|
690 |
+
|
691 |
+
{separator} {paragraph_separator}
|
692 |
+
|
693 |
+
{secondary_chunking_regex}
|
694 |
+
|
695 |
+
{include_metadata}
|
696 |
+
|
697 |
+
''')
|
698 |
+
.batch(
|
699 |
+
chunk_size = mo.ui.slider(start=100, stop=5000, step=1, label="**Chunk SizeL**", value=350, show_value=True),
|
700 |
+
chunk_overlap = mo.ui.slider(start=1, stop=1000, step=1, label="**Chunk Overlap:**", value=50, show_value=True),
|
701 |
+
separator = mo.ui.text(placeholder="Define a separator", label="**Separator:**", kind="text", value=" "),
|
702 |
+
paragraph_separator = mo.ui.text(placeholder="Define a paragraph separator",
|
703 |
+
label="**Paragraph Separator:**", kind="text",
|
704 |
+
value="\n\n\n"),
|
705 |
+
secondary_chunking_regex = mo.ui.text(placeholder="Define a secondary chunking regex",
|
706 |
+
label="**Chunking Regex:**", kind="text",
|
707 |
+
value="[^,.;?!]+[,.;?!]?"),
|
708 |
+
include_metadata= mo.ui.checkbox(value=True, label="**Include Metadata**")
|
709 |
+
)
|
710 |
+
.form(show_clear_button=True, bordered=False)
|
711 |
+
)
|
712 |
+
return (sentence_splitter_config,)
|
713 |
+
|
714 |
+
|
715 |
+
@app.cell
|
716 |
+
def sentence_splitter_instantiation(
|
717 |
+
SentenceSplitter,
|
718 |
+
sentence_splitter_config,
|
719 |
+
):
|
720 |
+
### Chunker/Sentence Splitter
|
721 |
+
def simple_whitespace_tokenizer(text):
|
722 |
+
return text.split()
|
723 |
+
|
724 |
+
if sentence_splitter_config.value is not None:
|
725 |
+
sentence_splitter_config_values = sentence_splitter_config.value
|
726 |
+
validated_chunk_overlap = min(sentence_splitter_config_values.get("chunk_overlap"),
|
727 |
+
int(sentence_splitter_config_values.get("chunk_size") * 0.3))
|
728 |
+
|
729 |
+
sentence_splitter = SentenceSplitter(
|
730 |
+
chunk_size=sentence_splitter_config_values.get("chunk_size"),
|
731 |
+
chunk_overlap=validated_chunk_overlap,
|
732 |
+
separator=sentence_splitter_config_values.get("separator"),
|
733 |
+
paragraph_separator=sentence_splitter_config_values.get("paragraph_separator"),
|
734 |
+
secondary_chunking_regex=sentence_splitter_config_values.get("secondary_chunking_regex"),
|
735 |
+
include_metadata=sentence_splitter_config_values.get("include_metadata"),
|
736 |
+
tokenizer=simple_whitespace_tokenizer
|
737 |
+
)
|
738 |
+
|
739 |
+
else:
|
740 |
+
sentence_splitter = SentenceSplitter(
|
741 |
+
chunk_size=2048,
|
742 |
+
chunk_overlap=204,
|
743 |
+
separator=" ",
|
744 |
+
paragraph_separator="\n\n\n",
|
745 |
+
secondary_chunking_regex="[^,.;?!]+[,.;?!]?",
|
746 |
+
include_metadata=True,
|
747 |
+
tokenizer=simple_whitespace_tokenizer
|
748 |
+
)
|
749 |
+
return (sentence_splitter,)
|
750 |
+
|
751 |
+
|
752 |
+
@app.cell
|
753 |
+
def text_state():
|
754 |
+
get_text_state, set_text_state = mo.state(None)
|
755 |
+
return get_text_state, set_text_state
|
756 |
+
|
757 |
+
|
758 |
+
@app.cell
|
759 |
+
def chunk_state():
|
760 |
+
get_chunk_state, set_chunk_state = mo.state(None)
|
761 |
+
return get_chunk_state, set_chunk_state
|
762 |
+
|
763 |
+
|
764 |
+
@app.function
|
765 |
+
def chunk_documents(loaded_texts, sentence_splitter, show_progress=True):
|
766 |
+
"""
|
767 |
+
Process each document in the loaded_texts dictionary using the sentence_splitter,
|
768 |
+
with an optional marimo progress bar tracking progress at document level.
|
769 |
+
|
770 |
+
Args:
|
771 |
+
loaded_texts (dict): Dictionary containing lists of Document objects
|
772 |
+
sentence_splitter: The sentence splitter object with get_nodes_from_documents method
|
773 |
+
show_progress (bool): Whether to show a progress bar during processing
|
774 |
+
|
775 |
+
Returns:
|
776 |
+
dict: Dictionary with the same structure but containing chunked texts
|
777 |
+
"""
|
778 |
+
chunked_texts_dict = {}
|
779 |
+
|
780 |
+
# Get the total number of documents across all keys
|
781 |
+
total_docs = sum(len(docs) for docs in loaded_texts.values())
|
782 |
+
processed_docs = 0
|
783 |
+
|
784 |
+
# Process with or without progress bar
|
785 |
+
if show_progress:
|
786 |
+
import marimo as mo
|
787 |
+
# Use progress bar with the total number of documents as total
|
788 |
+
with mo.status.progress_bar(
|
789 |
+
total=total_docs,
|
790 |
+
title="Processing Documents",
|
791 |
+
subtitle="Chunking documents...",
|
792 |
+
completion_title="Processing Complete",
|
793 |
+
completion_subtitle=f"{total_docs} documents processed",
|
794 |
+
remove_on_exit=True
|
795 |
+
) as bar:
|
796 |
+
# Process each key-value pair in the loaded_texts dictionary
|
797 |
+
for key, documents in loaded_texts.items():
|
798 |
+
# Update progress bar subtitle to show current key
|
799 |
+
doc_count = len(documents)
|
800 |
+
bar.update(subtitle=f"Chunking {key}... ({doc_count} documents)")
|
801 |
+
|
802 |
+
# Apply the sentence splitter to each list of documents
|
803 |
+
chunked_texts = sentence_splitter.get_nodes_from_documents(
|
804 |
+
documents,
|
805 |
+
show_progress=False # Disable internal progress to avoid nested bars
|
806 |
+
)
|
807 |
+
|
808 |
+
# Store the result with the same key
|
809 |
+
chunked_texts_dict[key] = chunked_texts
|
810 |
+
time.sleep(0.15)
|
811 |
+
|
812 |
+
# Update progress bar with the number of documents in this batch
|
813 |
+
bar.update(increment=doc_count)
|
814 |
+
processed_docs += doc_count
|
815 |
+
else:
|
816 |
+
# Process without progress bar
|
817 |
+
for key, documents in loaded_texts.items():
|
818 |
+
chunked_texts = sentence_splitter.get_nodes_from_documents(
|
819 |
+
documents,
|
820 |
+
show_progress=True # Use the internal progress bar if no marimo bar
|
821 |
+
)
|
822 |
+
chunked_texts_dict[key] = chunked_texts
|
823 |
+
|
824 |
+
return chunked_texts_dict
|
825 |
+
|
826 |
+
|
827 |
+
@app.cell
|
828 |
+
def chunked_nodes(chunked_texts, get_chunk_state, sentence_splitter):
|
829 |
+
if chunked_texts is not None and sentence_splitter:
|
830 |
+
chunked_documents = get_chunk_state()
|
831 |
+
else:
|
832 |
+
chunked_documents = None
|
833 |
+
return (chunked_documents,)
|
834 |
+
|
835 |
+
|
836 |
+
@app.cell
|
837 |
+
def prep_cumulative_df(chunked_documents, llamaindex_convert_docs_multi):
|
838 |
+
if chunked_documents is not None:
|
839 |
+
dict_from_nodes = llamaindex_convert_docs_multi(chunked_documents)
|
840 |
+
nodes_from_dict = llamaindex_convert_docs_multi(dict_from_nodes)
|
841 |
+
else:
|
842 |
+
dict_from_nodes = None
|
843 |
+
nodes_from_dict = None
|
844 |
+
return (dict_from_nodes,)
|
845 |
+
|
846 |
+
|
847 |
+
@app.cell
|
848 |
+
def chunks_to_process(
|
849 |
+
dict_from_nodes,
|
850 |
+
document_range_stack,
|
851 |
+
get_data_in_range_triplequote,
|
852 |
+
):
|
853 |
+
if dict_from_nodes is not None and document_range_stack.value is not None:
|
854 |
+
|
855 |
+
chunk_dict_df = create_cumulative_dataframe(dict_from_nodes)
|
856 |
+
|
857 |
+
if document_range_stack.value is not None:
|
858 |
+
chunk_start_idx = document_range_stack.value[0]
|
859 |
+
chunk_end_idx = document_range_stack.value[1]
|
860 |
+
else:
|
861 |
+
chunk_start_idx = 0
|
862 |
+
chunk_end_idx = len(chunk_dict_df)
|
863 |
+
|
864 |
+
chunk_range_index = [chunk_start_idx, chunk_end_idx]
|
865 |
+
chunks_dict = get_data_in_range_triplequote(chunk_dict_df,
|
866 |
+
index_range=chunk_range_index,
|
867 |
+
columns_to_include=["text"])
|
868 |
+
|
869 |
+
chunks_to_process = chunks_dict['text'] if 'text' in chunks_dict else []
|
870 |
+
else:
|
871 |
+
chunk_objects = None
|
872 |
+
chunks_dict = None
|
873 |
+
chunks_to_process = None
|
874 |
+
return chunks_dict, chunks_to_process
|
875 |
+
|
876 |
+
|
877 |
+
@app.cell
|
878 |
+
def helper_function_doc_formatting():
|
879 |
+
def llamaindex_convert_docs_multi(items):
|
880 |
+
"""
|
881 |
+
Automatically convert between document objects and dictionaries.
|
882 |
+
|
883 |
+
This function handles:
|
884 |
+
- Converting dictionaries to document objects
|
885 |
+
- Converting document objects to dictionaries
|
886 |
+
- Processing lists or individual items
|
887 |
+
- Supporting dictionary structures where values are lists of documents
|
888 |
+
|
889 |
+
Args:
|
890 |
+
items: A document object, dictionary, or list of either.
|
891 |
+
Can also be a dictionary mapping filenames to lists of documents.
|
892 |
+
|
893 |
+
Returns:
|
894 |
+
Converted item(s) maintaining the original structure
|
895 |
+
"""
|
896 |
+
# Handle empty or None input
|
897 |
+
if not items:
|
898 |
+
return []
|
899 |
+
|
900 |
+
# Handle dictionary mapping filenames to document lists (from load_pdf_data)
|
901 |
+
if isinstance(items, dict) and all(isinstance(v, list) for v in items.values()):
|
902 |
+
result = {}
|
903 |
+
for filename, doc_list in items.items():
|
904 |
+
result[filename] = llamaindex_convert_docs(doc_list)
|
905 |
+
return result
|
906 |
+
|
907 |
+
# Handle single items (not in a list)
|
908 |
+
if not isinstance(items, list):
|
909 |
+
# Single dictionary to document
|
910 |
+
if isinstance(items, dict):
|
911 |
+
# Determine document class
|
912 |
+
doc_class = None
|
913 |
+
if 'doc_type' in items:
|
914 |
+
import importlib
|
915 |
+
module_path, class_name = items['doc_type'].rsplit('.', 1)
|
916 |
+
module = importlib.import_module(module_path)
|
917 |
+
doc_class = getattr(module, class_name)
|
918 |
+
if not doc_class:
|
919 |
+
from llama_index.core.schema import Document
|
920 |
+
doc_class = Document
|
921 |
+
return doc_class.from_dict(items)
|
922 |
+
# Single document to dictionary
|
923 |
+
elif hasattr(items, 'to_dict'):
|
924 |
+
return items.to_dict()
|
925 |
+
# Return as is if can't convert
|
926 |
+
return items
|
927 |
+
|
928 |
+
# Handle list input
|
929 |
+
result = []
|
930 |
+
|
931 |
+
# Handle empty list
|
932 |
+
if len(items) == 0:
|
933 |
+
return result
|
934 |
+
|
935 |
+
# Determine the type of conversion based on the first non-None item
|
936 |
+
first_item = next((item for item in items if item is not None), None)
|
937 |
+
|
938 |
+
# If we found no non-None items, return empty list
|
939 |
+
if first_item is None:
|
940 |
+
return result
|
941 |
+
|
942 |
+
# Convert dictionaries to documents
|
943 |
+
if isinstance(first_item, dict):
|
944 |
+
# Get the right document class from the items themselves
|
945 |
+
doc_class = None
|
946 |
+
# Try to get doc class from metadata if available
|
947 |
+
if 'doc_type' in first_item:
|
948 |
+
import importlib
|
949 |
+
module_path, class_name = first_item['doc_type'].rsplit('.', 1)
|
950 |
+
module = importlib.import_module(module_path)
|
951 |
+
doc_class = getattr(module, class_name)
|
952 |
+
if not doc_class:
|
953 |
+
# Fallback to default Document class from llama_index
|
954 |
+
from llama_index.core.schema import Document
|
955 |
+
doc_class = Document
|
956 |
+
|
957 |
+
# Convert each dictionary to document
|
958 |
+
for item in items:
|
959 |
+
if isinstance(item, dict):
|
960 |
+
result.append(doc_class.from_dict(item))
|
961 |
+
elif item is None:
|
962 |
+
result.append(None)
|
963 |
+
elif isinstance(item, list):
|
964 |
+
result.append(llamaindex_convert_docs(item))
|
965 |
+
else:
|
966 |
+
result.append(item)
|
967 |
+
|
968 |
+
# Convert documents to dictionaries
|
969 |
+
else:
|
970 |
+
for item in items:
|
971 |
+
if hasattr(item, 'to_dict'):
|
972 |
+
result.append(item.to_dict())
|
973 |
+
elif item is None:
|
974 |
+
result.append(None)
|
975 |
+
elif isinstance(item, list):
|
976 |
+
result.append(llamaindex_convert_docs(item))
|
977 |
+
else:
|
978 |
+
result.append(item)
|
979 |
+
|
980 |
+
return result
|
981 |
+
|
982 |
+
def llamaindex_convert_docs(items):
|
983 |
+
"""
|
984 |
+
Automatically convert between document objects and dictionaries.
|
985 |
+
|
986 |
+
Args:
|
987 |
+
items: A list of document objects or dictionaries
|
988 |
+
|
989 |
+
Returns:
|
990 |
+
List of converted items (dictionaries or document objects)
|
991 |
+
"""
|
992 |
+
result = []
|
993 |
+
|
994 |
+
# Handle empty or None input
|
995 |
+
if not items:
|
996 |
+
return result
|
997 |
+
|
998 |
+
# Determine the type of conversion based on the first item
|
999 |
+
if isinstance(items[0], dict):
|
1000 |
+
# Get the right document class from the items themselves
|
1001 |
+
# Look for a 'doc_type' or '__class__' field in the dictionary
|
1002 |
+
doc_class = None
|
1003 |
+
|
1004 |
+
# Try to get doc class from metadata if available
|
1005 |
+
if 'doc_type' in items[0]:
|
1006 |
+
import importlib
|
1007 |
+
module_path, class_name = items[0]['doc_type'].rsplit('.', 1)
|
1008 |
+
module = importlib.import_module(module_path)
|
1009 |
+
doc_class = getattr(module, class_name)
|
1010 |
+
|
1011 |
+
if not doc_class:
|
1012 |
+
# Fallback to default Document class from llama_index
|
1013 |
+
from llama_index.core.schema import Document
|
1014 |
+
doc_class = Document
|
1015 |
+
|
1016 |
+
# Convert dictionaries to documents
|
1017 |
+
for item in items:
|
1018 |
+
if isinstance(item, dict):
|
1019 |
+
result.append(doc_class.from_dict(item))
|
1020 |
+
else:
|
1021 |
+
# Convert documents to dictionaries
|
1022 |
+
for item in items:
|
1023 |
+
if hasattr(item, 'to_dict'):
|
1024 |
+
result.append(item.to_dict())
|
1025 |
+
|
1026 |
+
return result
|
1027 |
+
return (llamaindex_convert_docs_multi,)
|
1028 |
+
|
1029 |
+
|
1030 |
+
@app.cell
|
1031 |
+
def helper_function_create_df():
|
1032 |
+
def create_document_dataframes(dict_from_docs):
|
1033 |
+
"""
|
1034 |
+
Creates a pandas DataFrame for each file in the dictionary.
|
1035 |
+
|
1036 |
+
Args:
|
1037 |
+
dict_from_docs: Dictionary mapping filenames to lists of documents
|
1038 |
+
|
1039 |
+
Returns:
|
1040 |
+
List of pandas DataFrames, each representing all documents from a single file
|
1041 |
+
"""
|
1042 |
+
dataframes = []
|
1043 |
+
|
1044 |
+
for filename, docs in dict_from_docs.items():
|
1045 |
+
# Create a list to hold all document records for this file
|
1046 |
+
file_records = []
|
1047 |
+
|
1048 |
+
for i, doc in enumerate(docs):
|
1049 |
+
# Convert the document to a format compatible with DataFrame
|
1050 |
+
if hasattr(doc, 'to_dict'):
|
1051 |
+
doc_data = doc.to_dict()
|
1052 |
+
elif isinstance(doc, dict):
|
1053 |
+
doc_data = doc
|
1054 |
+
else:
|
1055 |
+
doc_data = {'content': str(doc)}
|
1056 |
+
|
1057 |
+
# Add document index information
|
1058 |
+
doc_data['doc_index'] = i
|
1059 |
+
|
1060 |
+
# Add to the list of records for this file
|
1061 |
+
file_records.append(doc_data)
|
1062 |
+
|
1063 |
+
# Create a single DataFrame for all documents in this file
|
1064 |
+
if file_records:
|
1065 |
+
df = pd.DataFrame(file_records)
|
1066 |
+
df['filename'] = filename # Add filename as a column
|
1067 |
+
dataframes.append(df)
|
1068 |
+
|
1069 |
+
return dataframes
|
1070 |
+
|
1071 |
+
def create_dataframe_previews(dataframe_list, page_size=5):
|
1072 |
+
"""
|
1073 |
+
Creates a list of mo.ui.dataframe components, one for each DataFrame in the input list.
|
1074 |
+
|
1075 |
+
Args:
|
1076 |
+
dataframe_list: List of pandas DataFrames (output from create_document_dataframes)
|
1077 |
+
page_size: Number of rows to show per page for each component
|
1078 |
+
|
1079 |
+
Returns:
|
1080 |
+
List of mo.ui.dataframe components
|
1081 |
+
"""
|
1082 |
+
# Create a list of mo.ui.dataframe components
|
1083 |
+
preview_components = []
|
1084 |
+
|
1085 |
+
for df in dataframe_list:
|
1086 |
+
# Create a mo.ui.dataframe component for this DataFrame
|
1087 |
+
preview = mo.ui.dataframe(df, page_size=page_size)
|
1088 |
+
preview_components.append(preview)
|
1089 |
+
|
1090 |
+
return preview_components
|
1091 |
+
return
|
1092 |
+
|
1093 |
+
|
1094 |
+
@app.cell
|
1095 |
+
def helper_function_chart_preparation():
|
1096 |
+
import altair as alt
|
1097 |
+
import numpy as np
|
1098 |
+
import plotly.express as px
|
1099 |
+
from sklearn.manifold import TSNE
|
1100 |
+
|
1101 |
+
def prepare_embedding_data(embeddings, texts, model_id=None, embedding_dimensions=None):
|
1102 |
+
"""
|
1103 |
+
Prepare embedding data for visualization
|
1104 |
+
|
1105 |
+
Args:
|
1106 |
+
embeddings: List of embeddings arrays
|
1107 |
+
texts: List of text strings
|
1108 |
+
model_id: Embedding model ID (optional)
|
1109 |
+
embedding_dimensions: Embedding dimensions (optional)
|
1110 |
+
|
1111 |
+
Returns:
|
1112 |
+
DataFrame with processed data and metadata
|
1113 |
+
"""
|
1114 |
+
# Flatten embeddings (in case they're nested)
|
1115 |
+
flattened_embeddings = []
|
1116 |
+
for emb in embeddings:
|
1117 |
+
if isinstance(emb, list) and len(emb) > 0 and isinstance(emb[0], list):
|
1118 |
+
flattened_embeddings.append(emb[0]) # Take first element if nested
|
1119 |
+
else:
|
1120 |
+
flattened_embeddings.append(emb)
|
1121 |
+
|
1122 |
+
# Convert to numpy array
|
1123 |
+
embedding_array = np.array(flattened_embeddings)
|
1124 |
+
|
1125 |
+
# Apply dimensionality reduction (t-SNE)
|
1126 |
+
tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(embedding_array)-1))
|
1127 |
+
reduced_embeddings = tsne.fit_transform(embedding_array)
|
1128 |
+
|
1129 |
+
# Create truncated texts for display
|
1130 |
+
truncated_texts = [text[:50] + "..." if len(text) > 50 else text for text in texts]
|
1131 |
+
|
1132 |
+
# Create dataframe for visualization
|
1133 |
+
df = pd.DataFrame({
|
1134 |
+
"x": reduced_embeddings[:, 0],
|
1135 |
+
"y": reduced_embeddings[:, 1],
|
1136 |
+
"text": truncated_texts,
|
1137 |
+
"full_text": texts,
|
1138 |
+
"index": range(len(texts))
|
1139 |
+
})
|
1140 |
+
|
1141 |
+
# Add metadata
|
1142 |
+
metadata = {
|
1143 |
+
"model_id": model_id,
|
1144 |
+
"embedding_dimensions": embedding_dimensions
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
return df, metadata
|
1148 |
+
|
1149 |
+
def create_embedding_chart(df, metadata=None):
|
1150 |
+
"""
|
1151 |
+
Create an Altair chart for embedding visualization
|
1152 |
+
|
1153 |
+
Args:
|
1154 |
+
df: DataFrame with x, y coordinates and text
|
1155 |
+
metadata: Dictionary with model_id and embedding_dimensions
|
1156 |
+
|
1157 |
+
Returns:
|
1158 |
+
Altair chart
|
1159 |
+
"""
|
1160 |
+
model_id = metadata.get("model_id") if metadata else None
|
1161 |
+
embedding_dimensions = metadata.get("embedding_dimensions") if metadata else None
|
1162 |
+
|
1163 |
+
selection = alt.selection_multi(fields=['index'])
|
1164 |
+
|
1165 |
+
base = alt.Chart(df).encode(
|
1166 |
+
x=alt.X("x:Q", title="Dimension 1"),
|
1167 |
+
y=alt.Y("y:Q", title="Dimension 2"),
|
1168 |
+
tooltip=["text", "index"]
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
points = base.mark_circle(size=100).encode(
|
1172 |
+
color=alt.Color("index:N", legend=None),
|
1173 |
+
opacity=alt.condition(selection, alt.value(1), alt.value(0.2))
|
1174 |
+
).add_selection(selection) # Add this line to apply the selection
|
1175 |
+
|
1176 |
+
text = base.mark_text(align="left", dx=7).encode(
|
1177 |
+
text="index:N"
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
return (points + text).properties(
|
1181 |
+
width=700,
|
1182 |
+
height=500,
|
1183 |
+
title=f"Embedding Visualization{f' - Model: {model_id}' if model_id else ''}{f' ({embedding_dimensions} dimensions)' if embedding_dimensions else ''}"
|
1184 |
+
).interactive()
|
1185 |
+
|
1186 |
+
def show_selected_text(indices, texts):
|
1187 |
+
"""
|
1188 |
+
Create markdown display for selected texts
|
1189 |
+
|
1190 |
+
Args:
|
1191 |
+
indices: List of selected indices
|
1192 |
+
texts: List of all texts
|
1193 |
+
|
1194 |
+
Returns:
|
1195 |
+
Markdown string
|
1196 |
+
"""
|
1197 |
+
if not indices:
|
1198 |
+
return "No text selected"
|
1199 |
+
|
1200 |
+
selected_texts = [texts[i] for i in indices if i < len(texts)]
|
1201 |
+
return "\n\n".join([f"**Document {i}**:\n{text}" for i, text in zip(indices, selected_texts)])
|
1202 |
+
|
1203 |
+
def prepare_embedding_data_3d(embeddings, texts, model_id=None, embedding_dimensions=None):
|
1204 |
+
"""
|
1205 |
+
Prepare embedding data for 3D visualization
|
1206 |
+
|
1207 |
+
Args:
|
1208 |
+
embeddings: List of embeddings arrays
|
1209 |
+
texts: List of text strings
|
1210 |
+
model_id: Embedding model ID (optional)
|
1211 |
+
embedding_dimensions: Embedding dimensions (optional)
|
1212 |
+
|
1213 |
+
Returns:
|
1214 |
+
DataFrame with processed data and metadata
|
1215 |
+
"""
|
1216 |
+
# Flatten embeddings (in case they're nested)
|
1217 |
+
flattened_embeddings = []
|
1218 |
+
for emb in embeddings:
|
1219 |
+
if isinstance(emb, list) and len(emb) > 0 and isinstance(emb[0], list):
|
1220 |
+
flattened_embeddings.append(emb[0])
|
1221 |
+
else:
|
1222 |
+
flattened_embeddings.append(emb)
|
1223 |
+
|
1224 |
+
# Convert to numpy array
|
1225 |
+
embedding_array = np.array(flattened_embeddings)
|
1226 |
+
|
1227 |
+
# Handle the case of a single embedding differently
|
1228 |
+
if len(embedding_array) == 1:
|
1229 |
+
# For a single point, we don't need t-SNE, just use a fixed position
|
1230 |
+
reduced_embeddings = np.array([[0.0, 0.0, 0.0]])
|
1231 |
+
else:
|
1232 |
+
# Apply dimensionality reduction to 3D
|
1233 |
+
# Fix: Ensure perplexity is at least 1.0
|
1234 |
+
perplexity_value = max(1.0, min(30, len(embedding_array)-1))
|
1235 |
+
tsne = TSNE(n_components=3, random_state=42, perplexity=perplexity_value)
|
1236 |
+
reduced_embeddings = tsne.fit_transform(embedding_array)
|
1237 |
+
|
1238 |
+
# Format texts for display
|
1239 |
+
formatted_texts = []
|
1240 |
+
for text in texts:
|
1241 |
+
# Truncate if needed
|
1242 |
+
if len(text) > 500:
|
1243 |
+
text = text[:500] + "..."
|
1244 |
+
|
1245 |
+
# Insert line breaks for wrapping
|
1246 |
+
wrapped_text = ""
|
1247 |
+
for i in range(0, len(text), 50):
|
1248 |
+
wrapped_text += text[i:i+50] + "<br>"
|
1249 |
+
|
1250 |
+
formatted_texts.append("<b>"+wrapped_text+"</b>")
|
1251 |
+
|
1252 |
+
# Create dataframe for visualization
|
1253 |
+
df = pd.DataFrame({
|
1254 |
+
"x": reduced_embeddings[:, 0],
|
1255 |
+
"y": reduced_embeddings[:, 1],
|
1256 |
+
"z": reduced_embeddings[:, 2],
|
1257 |
+
"text": formatted_texts,
|
1258 |
+
"full_text": texts,
|
1259 |
+
"index": range(len(texts)),
|
1260 |
+
"embedding": flattened_embeddings # Store the original embeddings for later use
|
1261 |
+
})
|
1262 |
+
|
1263 |
+
# Add metadata
|
1264 |
+
metadata = {
|
1265 |
+
"model_id": model_id,
|
1266 |
+
"embedding_dimensions": embedding_dimensions
|
1267 |
+
}
|
1268 |
+
|
1269 |
+
return df, metadata
|
1270 |
+
|
1271 |
+
def create_3d_embedding_chart(df, metadata=None, chart_width=1200, chart_height=800, marker_size_var: int=3):
|
1272 |
+
"""
|
1273 |
+
Create a 3D Plotly chart for embedding visualization with proximity-based coloring
|
1274 |
+
"""
|
1275 |
+
model_id = metadata.get("model_id") if metadata else None
|
1276 |
+
embedding_dimensions = metadata.get("embedding_dimensions") if metadata else None
|
1277 |
+
|
1278 |
+
# Calculate the proximity between points
|
1279 |
+
from scipy.spatial.distance import pdist, squareform
|
1280 |
+
# Get the coordinates as a numpy array
|
1281 |
+
coords = df[['x', 'y', 'z']].values
|
1282 |
+
|
1283 |
+
# Calculate pairwise distances
|
1284 |
+
dist_matrix = squareform(pdist(coords))
|
1285 |
+
|
1286 |
+
# For each point, find its average distance to all other points
|
1287 |
+
avg_distances = np.mean(dist_matrix, axis=1)
|
1288 |
+
|
1289 |
+
# Add this to the dataframe - smaller values = closer to other points
|
1290 |
+
df['proximity'] = avg_distances
|
1291 |
+
|
1292 |
+
# Create 3D scatter plot with proximity-based coloring
|
1293 |
+
fig = px.scatter_3d(
|
1294 |
+
df,
|
1295 |
+
x='x',
|
1296 |
+
y='y',
|
1297 |
+
z='z',
|
1298 |
+
# x='petal_length', # Changed from 'x' to 'petal_length'
|
1299 |
+
# y='petal_width', # Changed from 'y' to 'petal_width'
|
1300 |
+
# z='petal_height',
|
1301 |
+
color='proximity', # Color based on proximity
|
1302 |
+
color_continuous_scale='Viridis_r', # Reversed so closer points are warmer colors
|
1303 |
+
hover_data=['text', 'index', 'proximity'],
|
1304 |
+
labels={'x': 'Dimension 1', 'y': 'Dimension 2', 'z': 'Dimension 3', 'proximity': 'Avg Distance'},
|
1305 |
+
# labels={'x': 'Dimension 1', 'y': 'Dimension 2', 'z': 'Dimension 3', 'proximity': 'Avg Distance'},
|
1306 |
+
title=f"<b>3D Embedding Visualization</b>{f' - Model: <b>{model_id}</b>' if model_id else ''}{f' <i>({embedding_dimensions} dimensions)</i>' if embedding_dimensions else ''}",
|
1307 |
+
text='index',
|
1308 |
+
# size_max=marker_size_var
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
# Update marker size and layout
|
1312 |
+
# fig.update_traces(marker=dict(size=3), selector=dict(mode='markers'))
|
1313 |
+
fig.update_traces(
|
1314 |
+
marker=dict(
|
1315 |
+
size=marker_size_var, # Very small marker size
|
1316 |
+
opacity=0.7, # Slightly transparent
|
1317 |
+
symbol="diamond", # Use circle markers (other options: "square", "diamond", "cross", "x")
|
1318 |
+
line=dict(
|
1319 |
+
width=0.5, # Very thin border
|
1320 |
+
color="white" # White outline makes small dots more visible
|
1321 |
+
)
|
1322 |
+
),
|
1323 |
+
textfont=dict(
|
1324 |
+
color="rgba(255, 255, 255, 0.3)",
|
1325 |
+
size=8
|
1326 |
+
),
|
1327 |
+
# hovertemplate="<b>index=%{text}</b><br>%{customdata[0]}<br><br>Avg Distance=%{customdata[2]:.4f}<extra></extra>", ### Hover Changes
|
1328 |
+
hovertemplate="text:<br><b>%{customdata[0]}</b><br>index: <b>%{text}</b><br><br>Avg Distance: <b>%{customdata[2]:.4f}</b><extra></extra>",
|
1329 |
+
hoverinfo="text+name",
|
1330 |
+
hoverlabel=dict(
|
1331 |
+
bgcolor="white", # White background for hover labels
|
1332 |
+
font_size=12 # Font size for hover text
|
1333 |
+
),
|
1334 |
+
selector=dict(type='scatter3d')
|
1335 |
+
)
|
1336 |
+
|
1337 |
+
# Keep your existing layout settings
|
1338 |
+
fig.update_layout(
|
1339 |
+
scene=dict(
|
1340 |
+
xaxis=dict(
|
1341 |
+
title='Dimension 1',
|
1342 |
+
nticks=40,
|
1343 |
+
backgroundcolor="rgb(10, 10, 20, 0.1)",
|
1344 |
+
gridcolor="white",
|
1345 |
+
showbackground=True,
|
1346 |
+
gridwidth=0.35,
|
1347 |
+
zerolinecolor="white",
|
1348 |
+
),
|
1349 |
+
yaxis=dict(
|
1350 |
+
title='Dimension 2',
|
1351 |
+
nticks=40,
|
1352 |
+
backgroundcolor="rgb(10, 10, 20, 0.1)",
|
1353 |
+
gridcolor="white",
|
1354 |
+
showbackground=True,
|
1355 |
+
gridwidth=0.35,
|
1356 |
+
zerolinecolor="white",
|
1357 |
+
),
|
1358 |
+
zaxis=dict(
|
1359 |
+
title='Dimension 3',
|
1360 |
+
nticks=40,
|
1361 |
+
backgroundcolor="rgb(10, 10, 20, 0.1)",
|
1362 |
+
gridcolor="white",
|
1363 |
+
showbackground=True,
|
1364 |
+
gridwidth=0.35,
|
1365 |
+
zerolinecolor="white",
|
1366 |
+
),
|
1367 |
+
# Control camera view angle
|
1368 |
+
camera=dict(
|
1369 |
+
up=dict(x=0, y=0, z=1),
|
1370 |
+
center=dict(x=0, y=0, z=0),
|
1371 |
+
eye=dict(x=1.25, y=1.25, z=1.25),
|
1372 |
+
),
|
1373 |
+
aspectratio=dict(x=1, y=1, z=1),
|
1374 |
+
aspectmode='data'
|
1375 |
+
),
|
1376 |
+
width=int(chart_width),
|
1377 |
+
height=int(chart_height),
|
1378 |
+
margin=dict(r=20, l=10, b=10, t=50),
|
1379 |
+
paper_bgcolor="rgb(0, 0, 0)",
|
1380 |
+
plot_bgcolor="rgb(0, 0, 0)",
|
1381 |
+
coloraxis_colorbar=dict(
|
1382 |
+
title="Average Distance",
|
1383 |
+
thicknessmode="pixels", thickness=20,
|
1384 |
+
lenmode="pixels", len=400,
|
1385 |
+
yanchor="top", y=1,
|
1386 |
+
ticks="outside",
|
1387 |
+
dtick=0.1
|
1388 |
+
)
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
return fig
|
1392 |
+
return create_3d_embedding_chart, prepare_embedding_data_3d
|
1393 |
+
|
1394 |
+
|
1395 |
+
@app.cell
|
1396 |
+
def helper_function_text_preparation():
|
1397 |
+
def convert_table_to_json_docs(df, selected_columns=None):
|
1398 |
+
"""
|
1399 |
+
Convert a pandas DataFrame or dictionary to a list of JSON documents.
|
1400 |
+
Dynamically includes columns based on user selection.
|
1401 |
+
Column names are standardized to lowercase with underscores instead of spaces
|
1402 |
+
and special characters removed.
|
1403 |
+
|
1404 |
+
Args:
|
1405 |
+
df: The DataFrame or dictionary to process
|
1406 |
+
selected_columns: List of column names to include in the output documents
|
1407 |
+
|
1408 |
+
Returns:
|
1409 |
+
list: A list of dictionaries, each representing a row as a JSON document
|
1410 |
+
"""
|
1411 |
+
import pandas as pd
|
1412 |
+
import re
|
1413 |
+
|
1414 |
+
def standardize_key(key):
|
1415 |
+
"""Convert a column name to lowercase with underscores instead of spaces and no special characters"""
|
1416 |
+
if not isinstance(key, str):
|
1417 |
+
return str(key).lower()
|
1418 |
+
# Replace spaces with underscores and convert to lowercase
|
1419 |
+
key = key.lower().replace(' ', '_')
|
1420 |
+
# Remove special characters (keeping alphanumeric and underscores)
|
1421 |
+
return re.sub(r'[^\w]', '', key)
|
1422 |
+
|
1423 |
+
# Handle case when input is a dictionary
|
1424 |
+
if isinstance(df, dict):
|
1425 |
+
# Filter the dictionary to include only selected columns
|
1426 |
+
if selected_columns:
|
1427 |
+
return [{standardize_key(k): df.get(k, None) for k in selected_columns}]
|
1428 |
+
else:
|
1429 |
+
# If no columns selected, return all key-value pairs with standardized keys
|
1430 |
+
return [{standardize_key(k): v for k, v in df.items()}]
|
1431 |
+
|
1432 |
+
# Handle case when df is None
|
1433 |
+
if df is None:
|
1434 |
+
return []
|
1435 |
+
|
1436 |
+
# Ensure df is a DataFrame
|
1437 |
+
if not isinstance(df, pd.DataFrame):
|
1438 |
+
try:
|
1439 |
+
df = pd.DataFrame(df)
|
1440 |
+
except:
|
1441 |
+
return [] # Return empty list if conversion fails
|
1442 |
+
|
1443 |
+
# Now check if DataFrame is empty
|
1444 |
+
if df.empty:
|
1445 |
+
return []
|
1446 |
+
|
1447 |
+
# If no columns are specifically selected, use all available columns
|
1448 |
+
if not selected_columns or not isinstance(selected_columns, list) or len(selected_columns) == 0:
|
1449 |
+
selected_columns = list(df.columns)
|
1450 |
+
|
1451 |
+
# Determine which columns exist in the DataFrame
|
1452 |
+
available_columns = []
|
1453 |
+
columns_lower = {col.lower(): col for col in df.columns if isinstance(col, str)}
|
1454 |
+
|
1455 |
+
for col in selected_columns:
|
1456 |
+
if col in df.columns:
|
1457 |
+
available_columns.append(col)
|
1458 |
+
elif isinstance(col, str) and col.lower() in columns_lower:
|
1459 |
+
available_columns.append(columns_lower[col.lower()])
|
1460 |
+
|
1461 |
+
# If no valid columns found, return empty list
|
1462 |
+
if not available_columns:
|
1463 |
+
return []
|
1464 |
+
|
1465 |
+
# Process rows
|
1466 |
+
json_docs = []
|
1467 |
+
for _, row in df.iterrows():
|
1468 |
+
doc = {}
|
1469 |
+
for col in available_columns:
|
1470 |
+
value = row[col]
|
1471 |
+
# Standardize the column name when adding to document
|
1472 |
+
std_col = standardize_key(col)
|
1473 |
+
doc[std_col] = None if pd.isna(value) else value
|
1474 |
+
json_docs.append(doc)
|
1475 |
+
|
1476 |
+
return json_docs
|
1477 |
+
|
1478 |
+
def get_column_values(df, columns_to_include):
|
1479 |
+
"""
|
1480 |
+
Extract values from specified columns of a dataframe as lists.
|
1481 |
+
|
1482 |
+
Args:
|
1483 |
+
df: A pandas DataFrame
|
1484 |
+
columns_to_include: A list of column names to extract
|
1485 |
+
|
1486 |
+
Returns:
|
1487 |
+
Dictionary with column names as keys and their values as lists
|
1488 |
+
"""
|
1489 |
+
result = {}
|
1490 |
+
|
1491 |
+
# Validate that columns exist in the dataframe
|
1492 |
+
valid_columns = [col for col in columns_to_include if col in df.columns]
|
1493 |
+
invalid_columns = set(columns_to_include) - set(valid_columns)
|
1494 |
+
|
1495 |
+
if invalid_columns:
|
1496 |
+
print(f"Warning: These columns don't exist in the dataframe: {list(invalid_columns)}")
|
1497 |
+
|
1498 |
+
# Extract values for each valid column
|
1499 |
+
for col in valid_columns:
|
1500 |
+
result[col] = df[col].tolist()
|
1501 |
+
|
1502 |
+
return result
|
1503 |
+
|
1504 |
+
def get_data_in_range(doc_dict_df, index_range, columns_to_include):
|
1505 |
+
"""
|
1506 |
+
Extract values from specified columns of a dataframe within a given index range.
|
1507 |
+
|
1508 |
+
Args:
|
1509 |
+
doc_dict_df: The pandas DataFrame to extract data from
|
1510 |
+
index_range: An integer specifying the number of rows to include (from 0 to index_range-1)
|
1511 |
+
columns_to_include: A list of column names to extract
|
1512 |
+
|
1513 |
+
Returns:
|
1514 |
+
Dictionary with column names as keys and their values (within the index range) as lists
|
1515 |
+
"""
|
1516 |
+
# Validate the index range
|
1517 |
+
max_index = len(doc_dict_df)
|
1518 |
+
if index_range <= 0:
|
1519 |
+
print(f"Warning: Invalid index range {index_range}. Must be positive.")
|
1520 |
+
return {}
|
1521 |
+
|
1522 |
+
# Adjust index_range if it exceeds the dataframe length
|
1523 |
+
if index_range > max_index:
|
1524 |
+
print(f"Warning: Index range {index_range} exceeds dataframe length {max_index}. Using maximum length.")
|
1525 |
+
index_range = max_index
|
1526 |
+
|
1527 |
+
# Slice the dataframe to get rows from 0 to index_range-1
|
1528 |
+
df_subset = doc_dict_df.iloc[:index_range]
|
1529 |
+
|
1530 |
+
# Use the provided get_column_values function to extract column data
|
1531 |
+
return get_column_values(df_subset, columns_to_include)
|
1532 |
+
|
1533 |
+
def get_data_in_range_triplequote(doc_dict_df, index_range, columns_to_include):
|
1534 |
+
"""
|
1535 |
+
Extract values from specified columns of a dataframe within a given index range.
|
1536 |
+
Wraps string values with triple quotes and escapes URLs.
|
1537 |
+
|
1538 |
+
Args:
|
1539 |
+
doc_dict_df: The pandas DataFrame to extract data from
|
1540 |
+
index_range: A list of two integers specifying the start and end indices of rows to include
|
1541 |
+
(e.g., [0, 10] includes rows from index 0 to 9 inclusive)
|
1542 |
+
columns_to_include: A list of column names to extract
|
1543 |
+
"""
|
1544 |
+
# Validate the index range
|
1545 |
+
start_idx, end_idx = index_range
|
1546 |
+
max_index = len(doc_dict_df)
|
1547 |
+
|
1548 |
+
# Validate start index
|
1549 |
+
if start_idx < 0:
|
1550 |
+
print(f"Warning: Invalid start index {start_idx}. Using 0 instead.")
|
1551 |
+
start_idx = 0
|
1552 |
+
|
1553 |
+
# Validate end index
|
1554 |
+
if end_idx <= start_idx:
|
1555 |
+
print(f"Warning: End index {end_idx} must be greater than start index {start_idx}. Using {start_idx + 1} instead.")
|
1556 |
+
end_idx = start_idx + 1
|
1557 |
+
|
1558 |
+
# Adjust end index if it exceeds the dataframe length
|
1559 |
+
if end_idx > max_index:
|
1560 |
+
print(f"Warning: End index {end_idx} exceeds dataframe length {max_index}. Using maximum length.")
|
1561 |
+
end_idx = max_index
|
1562 |
+
|
1563 |
+
# Slice the dataframe to get rows from start_idx to end_idx-1
|
1564 |
+
# Using .loc with slice to preserve original indices
|
1565 |
+
df_subset = doc_dict_df.iloc[start_idx:end_idx]
|
1566 |
+
|
1567 |
+
# Use the provided get_column_values function to extract column data
|
1568 |
+
result = get_column_values(df_subset, columns_to_include)
|
1569 |
+
|
1570 |
+
# Process each string result to wrap in triple quotes
|
1571 |
+
for col in result:
|
1572 |
+
if isinstance(result[col], list):
|
1573 |
+
# Create a new list with items wrapped in triple quotes
|
1574 |
+
processed_items = []
|
1575 |
+
for item in result[col]:
|
1576 |
+
if isinstance(item, str):
|
1577 |
+
# Replace http:// and https:// with escaped versions
|
1578 |
+
item = item.replace("http://", "http\\://").replace("https://", "https\\://")
|
1579 |
+
# processed_items.append('"""' + item + '"""')
|
1580 |
+
processed_items.append(item)
|
1581 |
+
else:
|
1582 |
+
processed_items.append(item)
|
1583 |
+
result[col] = processed_items
|
1584 |
+
return result
|
1585 |
+
return (get_data_in_range_triplequote,)
|
1586 |
+
|
1587 |
+
|
1588 |
+
@app.cell
|
1589 |
+
def prepare_doc_select(sentence_splitter_config):
|
1590 |
+
def prepare_document_selection(node_dict):
|
1591 |
+
"""
|
1592 |
+
Creates document selection UI component.
|
1593 |
+
Args:
|
1594 |
+
node_dict: Dictionary mapping filenames to lists of documents
|
1595 |
+
Returns:
|
1596 |
+
mo.ui component for document selection
|
1597 |
+
"""
|
1598 |
+
# Calculate total number of documents across all files
|
1599 |
+
total_docs = sum(len(docs) for docs in node_dict.values())
|
1600 |
+
|
1601 |
+
# Create a combined DataFrame of all documents for table selection
|
1602 |
+
all_docs_records = []
|
1603 |
+
doc_index_global = 0
|
1604 |
+
for filename, docs in node_dict.items():
|
1605 |
+
for i, doc in enumerate(docs):
|
1606 |
+
# Convert the document to a format compatible with DataFrame
|
1607 |
+
if hasattr(doc, 'to_dict'):
|
1608 |
+
doc_data = doc.to_dict()
|
1609 |
+
elif isinstance(doc, dict):
|
1610 |
+
doc_data = doc
|
1611 |
+
else:
|
1612 |
+
doc_data = {'content': str(doc)}
|
1613 |
+
|
1614 |
+
# Add metadata
|
1615 |
+
doc_data['filename'] = filename
|
1616 |
+
doc_data['doc_index'] = i
|
1617 |
+
doc_data['global_index'] = doc_index_global
|
1618 |
+
all_docs_records.append(doc_data)
|
1619 |
+
doc_index_global += 1
|
1620 |
+
|
1621 |
+
# Create UI component
|
1622 |
+
stop_value = max(total_docs, 2)
|
1623 |
+
llama_docs = mo.ui.range_slider(
|
1624 |
+
start=1,
|
1625 |
+
stop=stop_value,
|
1626 |
+
step=1,
|
1627 |
+
full_width=True,
|
1628 |
+
show_value=True,
|
1629 |
+
label="**Select a Range of Chunks to Visualize:**"
|
1630 |
+
).form(submit_button_disabled=check_state(sentence_splitter_config.value))
|
1631 |
+
|
1632 |
+
return llama_docs
|
1633 |
+
return (prepare_document_selection,)
|
1634 |
+
|
1635 |
+
|
1636 |
+
@app.cell
|
1637 |
+
def document_range_selection(
|
1638 |
+
dict_from_nodes,
|
1639 |
+
prepare_document_selection,
|
1640 |
+
set_range_slider_state,
|
1641 |
+
):
|
1642 |
+
if dict_from_nodes is not None:
|
1643 |
+
llama_docs = prepare_document_selection(dict_from_nodes)
|
1644 |
+
set_range_slider_state(llama_docs)
|
1645 |
+
else:
|
1646 |
+
bare_dict = {}
|
1647 |
+
llama_docs = prepare_document_selection(bare_dict)
|
1648 |
+
return
|
1649 |
+
|
1650 |
+
|
1651 |
+
@app.function
|
1652 |
+
def create_cumulative_dataframe(dict_from_docs):
|
1653 |
+
"""
|
1654 |
+
Creates a cumulative DataFrame from a nested dictionary of documents.
|
1655 |
+
|
1656 |
+
Args:
|
1657 |
+
dict_from_docs: Dictionary mapping filenames to lists of documents
|
1658 |
+
|
1659 |
+
Returns:
|
1660 |
+
DataFrame with all documents flattened with global indices
|
1661 |
+
"""
|
1662 |
+
# Create a list to hold all document records
|
1663 |
+
all_records = []
|
1664 |
+
global_idx = 1 # Start from 1 to match range slider expectations
|
1665 |
+
|
1666 |
+
for filename, docs in dict_from_docs.items():
|
1667 |
+
for i, doc in enumerate(docs):
|
1668 |
+
# Convert the document to a dict format
|
1669 |
+
if hasattr(doc, 'to_dict'):
|
1670 |
+
doc_data = doc.to_dict()
|
1671 |
+
elif isinstance(doc, dict):
|
1672 |
+
doc_data = doc.copy()
|
1673 |
+
else:
|
1674 |
+
doc_data = {'content': str(doc)}
|
1675 |
+
|
1676 |
+
# Add additional metadata
|
1677 |
+
doc_data['filename'] = filename
|
1678 |
+
doc_data['doc_index'] = i
|
1679 |
+
doc_data['global_index'] = global_idx
|
1680 |
+
|
1681 |
+
# If there's 'content' but no 'text', create a 'text' field
|
1682 |
+
if 'content' in doc_data and 'text' not in doc_data:
|
1683 |
+
doc_data['text'] = doc_data['content']
|
1684 |
+
|
1685 |
+
all_records.append(doc_data)
|
1686 |
+
global_idx += 1
|
1687 |
+
|
1688 |
+
# Create DataFrame from all records
|
1689 |
+
return pd.DataFrame(all_records)
|
1690 |
+
|
1691 |
+
|
1692 |
+
@app.function
|
1693 |
+
def create_stats(texts_dict, bordered=False, object_names=None, group_by_row=False, items_per_row=6, gap=2, label="Chunk"):
|
1694 |
+
"""
|
1695 |
+
Create a list of stat objects for each item in the specified dictionary.
|
1696 |
+
|
1697 |
+
Parameters:
|
1698 |
+
- texts_dict (dict): Dictionary containing the text data
|
1699 |
+
- bordered (bool): Whether the stats should be bordered
|
1700 |
+
- object_names (list or tuple): Two object names to use for label and value
|
1701 |
+
[label_object, value_object]
|
1702 |
+
- group_by_row (bool): Whether to group stats in rows (horizontal stacks)
|
1703 |
+
- items_per_row (int): Number of stat objects per row when group_by_row is True
|
1704 |
+
|
1705 |
+
Returns:
|
1706 |
+
- object: A vertical stack of stat objects or rows of stat objects
|
1707 |
+
"""
|
1708 |
+
if not object_names or len(object_names) < 2:
|
1709 |
+
raise ValueError("You must provide two object names as a list or tuple")
|
1710 |
+
|
1711 |
+
label_object = object_names[0]
|
1712 |
+
value_object = object_names[1]
|
1713 |
+
|
1714 |
+
# Validate that both objects exist in the dictionary
|
1715 |
+
if label_object not in texts_dict:
|
1716 |
+
raise ValueError(f"Label object '{label_object}' not found in texts_dict")
|
1717 |
+
if value_object not in texts_dict:
|
1718 |
+
raise ValueError(f"Value object '{value_object}' not found in texts_dict")
|
1719 |
+
|
1720 |
+
# Determine how many items to process (based on the label object length)
|
1721 |
+
num_items = len(texts_dict[label_object])
|
1722 |
+
|
1723 |
+
# Create individual stat objects
|
1724 |
+
individual_stats = []
|
1725 |
+
for i in range(num_items):
|
1726 |
+
stat = mo.stat(
|
1727 |
+
label=texts_dict[label_object][i],
|
1728 |
+
value=f"{label} Number: {len(texts_dict[value_object][i])}",
|
1729 |
+
bordered=bordered
|
1730 |
+
)
|
1731 |
+
individual_stats.append(stat)
|
1732 |
+
|
1733 |
+
# If grouping is not enabled, just return a vertical stack of all stats
|
1734 |
+
if not group_by_row:
|
1735 |
+
return mo.vstack(individual_stats, wrap=False)
|
1736 |
+
|
1737 |
+
# Group stats into rows based on items_per_row
|
1738 |
+
rows = []
|
1739 |
+
for i in range(0, num_items, items_per_row):
|
1740 |
+
# Get a slice of stats for this row (up to items_per_row items)
|
1741 |
+
row_stats = individual_stats[i:i+items_per_row]
|
1742 |
+
# Create a horizontal stack for this row
|
1743 |
+
widths = [0.35] * len(row_stats)
|
1744 |
+
row = mo.hstack(row_stats, gap=gap, align="start", justify="center", widths=widths)
|
1745 |
+
rows.append(row)
|
1746 |
+
|
1747 |
+
# Return a vertical stack of all rows
|
1748 |
+
return mo.vstack(rows)
|
1749 |
+
|
1750 |
+
|
1751 |
+
@app.cell
|
1752 |
+
def prepare_chart_embeddings(
|
1753 |
+
chunks_to_process,
|
1754 |
+
emb_model,
|
1755 |
+
emb_model_emb_dim,
|
1756 |
+
get_embedding_state,
|
1757 |
+
prepare_embedding_data_3d,
|
1758 |
+
):
|
1759 |
+
# chart_dataframe, chart_metadata = None, None
|
1760 |
+
if chunks_to_process is not None and get_embedding_state() is not None:
|
1761 |
+
chart_dataframe, chart_metadata = prepare_embedding_data_3d(
|
1762 |
+
get_embedding_state(),
|
1763 |
+
chunks_to_process,
|
1764 |
+
model_id=emb_model,
|
1765 |
+
embedding_dimensions=emb_model_emb_dim
|
1766 |
+
)
|
1767 |
+
else:
|
1768 |
+
chart_dataframe, chart_metadata = None, None
|
1769 |
+
return chart_dataframe, chart_metadata
|
1770 |
+
|
1771 |
+
|
1772 |
+
@app.cell
|
1773 |
+
def chart_dims():
|
1774 |
+
chart_dimensions = (
|
1775 |
+
mo.md('''
|
1776 |
+
> **Adjust Chart Window**
|
1777 |
+
|
1778 |
+
{chart_height}
|
1779 |
+
|
1780 |
+
{chat_width}
|
1781 |
+
|
1782 |
+
''').batch(
|
1783 |
+
chart_height = mo.ui.slider(start=500, step=30, stop=1000, label="**Height:**", value=800, show_value=True),
|
1784 |
+
chat_width = mo.ui.slider(start=900, step=50, stop=1400, label="**Width:**", value=1200, show_value=True)
|
1785 |
+
)
|
1786 |
+
)
|
1787 |
+
return (chart_dimensions,)
|
1788 |
+
|
1789 |
+
|
1790 |
+
@app.cell
|
1791 |
+
def chart_dim_values(chart_dimensions):
|
1792 |
+
chart_height = chart_dimensions.value['chart_height']
|
1793 |
+
chart_width = chart_dimensions.value['chat_width']
|
1794 |
+
return chart_height, chart_width
|
1795 |
+
|
1796 |
+
|
1797 |
+
@app.cell
|
1798 |
+
def create_baseline_chart(
|
1799 |
+
chart_dataframe,
|
1800 |
+
chart_height,
|
1801 |
+
chart_metadata,
|
1802 |
+
chart_width,
|
1803 |
+
create_3d_embedding_chart,
|
1804 |
+
):
|
1805 |
+
if chart_dataframe is not None and chart_metadata is not None:
|
1806 |
+
emb_plot = create_3d_embedding_chart(chart_dataframe, chart_metadata, chart_width, chart_height, marker_size_var=9)
|
1807 |
+
chart = mo.ui.plotly(emb_plot)
|
1808 |
+
else:
|
1809 |
+
emb_plot = None
|
1810 |
+
chart = None
|
1811 |
+
return (emb_plot,)
|
1812 |
+
|
1813 |
+
|
1814 |
+
@app.cell
|
1815 |
+
def test_query(get_chunk_state):
|
1816 |
+
placeholder = """How can i use watsonx.data to perform vector search?"""
|
1817 |
+
|
1818 |
+
query = mo.ui.text_area(label="**Write text to check:**", full_width=True, rows=8, value=placeholder).form(show_clear_button=True, submit_button_disabled=check_state(get_chunk_state()))
|
1819 |
+
return (query,)
|
1820 |
+
|
1821 |
+
|
1822 |
+
@app.cell
|
1823 |
+
def query_stack(chart_dimensions, query):
|
1824 |
+
# query_stack = mo.hstack([query], justify="space-around", align="center", widths=[0.65])
|
1825 |
+
query_stack = mo.hstack([query, chart_dimensions], justify="space-around", align="center", gap=15)
|
1826 |
+
return (query_stack,)
|
1827 |
+
|
1828 |
+
|
1829 |
+
@app.function
|
1830 |
+
def check_state(variable):
|
1831 |
+
return variable is None
|
1832 |
+
|
1833 |
+
|
1834 |
+
@app.cell
|
1835 |
+
def helper_function_add_query_to_chart():
|
1836 |
+
def add_query_to_embedding_chart(existing_chart, query_coords, query_text, marker_size=12):
|
1837 |
+
"""
|
1838 |
+
Add a query point to an existing 3D embedding chart as a large red dot.
|
1839 |
+
|
1840 |
+
Args:
|
1841 |
+
existing_chart: The existing plotly figure or chart data
|
1842 |
+
query_coords: Dictionary with 'x', 'y', 'z' coordinates for the query point
|
1843 |
+
query_text: Text of the query to display on hover
|
1844 |
+
marker_size: Size of the query marker (default: 18, typically 2x other markers)
|
1845 |
+
|
1846 |
+
Returns:
|
1847 |
+
A modified plotly figure with the query point added as a red dot
|
1848 |
+
"""
|
1849 |
+
import plotly.graph_objects as go
|
1850 |
+
|
1851 |
+
# Create a deep copy of the existing chart to avoid modifying the original
|
1852 |
+
import copy
|
1853 |
+
chart_copy = copy.deepcopy(existing_chart)
|
1854 |
+
|
1855 |
+
# Handle case where chart_copy is a dictionary or list (from mo.ui.plotly)
|
1856 |
+
if isinstance(chart_copy, (dict, list)):
|
1857 |
+
# Create a new plotly figure from the data
|
1858 |
+
import plotly.graph_objects as go
|
1859 |
+
|
1860 |
+
if isinstance(chart_copy, list):
|
1861 |
+
# If it's a list, assume it's a list of traces
|
1862 |
+
fig = go.Figure(data=chart_copy)
|
1863 |
+
else:
|
1864 |
+
# If it's a dict with 'data' and 'layout'
|
1865 |
+
fig = go.Figure(data=chart_copy.get('data', []), layout=chart_copy.get('layout', {}))
|
1866 |
+
|
1867 |
+
chart_copy = fig
|
1868 |
+
|
1869 |
+
# Create the query trace
|
1870 |
+
query_trace = go.Scatter3d(
|
1871 |
+
x=[query_coords['x']],
|
1872 |
+
y=[query_coords['y']],
|
1873 |
+
z=[query_coords['z']],
|
1874 |
+
mode='markers',
|
1875 |
+
name='Query',
|
1876 |
+
marker=dict(
|
1877 |
+
size=marker_size, # Typically 2x the size of other markers
|
1878 |
+
color='red', # Bright red color
|
1879 |
+
symbol='circle', # Circle shape
|
1880 |
+
opacity=0.70, # Fully opaque
|
1881 |
+
line=dict(
|
1882 |
+
width=1, # Thin white border
|
1883 |
+
color='white'
|
1884 |
+
)
|
1885 |
+
),
|
1886 |
+
# text=['Query: ' + query_text],
|
1887 |
+
text=['<b>Query:</b><br>' + '<br>'.join([query_text[i:i+50] for i in range(0, len(query_text), 50)])], ### Text Wrapping
|
1888 |
+
hoverinfo="text+name"
|
1889 |
+
)
|
1890 |
+
|
1891 |
+
# Add the query trace to the chart copy
|
1892 |
+
chart_copy.add_trace(query_trace)
|
1893 |
+
|
1894 |
+
return chart_copy
|
1895 |
+
|
1896 |
+
|
1897 |
+
def get_query_coordinates(reference_embeddings=None, query_embedding=None):
|
1898 |
+
"""
|
1899 |
+
Calculate appropriate coordinates for a query point based on reference embeddings.
|
1900 |
+
|
1901 |
+
This function handles several scenarios:
|
1902 |
+
1. If both reference embeddings and query embedding are provided, it places the
|
1903 |
+
query near similar documents.
|
1904 |
+
2. If only reference embeddings are provided, it places the query at a visible
|
1905 |
+
location near the center of the chart.
|
1906 |
+
3. If neither are provided, it returns default origin coordinates.
|
1907 |
+
|
1908 |
+
Args:
|
1909 |
+
reference_embeddings: DataFrame with x, y, z coordinates from the main chart
|
1910 |
+
query_embedding: The embedding vector of the query
|
1911 |
+
|
1912 |
+
Returns:
|
1913 |
+
Dictionary with x, y, z coordinates for the query point
|
1914 |
+
"""
|
1915 |
+
import numpy as np
|
1916 |
+
|
1917 |
+
# Default coordinates (origin with slight offset)
|
1918 |
+
default_coords = {'x': 0.0, 'y': 0.0, 'z': 0.0}
|
1919 |
+
|
1920 |
+
# If we don't have reference embeddings, return default
|
1921 |
+
if reference_embeddings is None or len(reference_embeddings) == 0:
|
1922 |
+
return default_coords
|
1923 |
+
|
1924 |
+
# If we have reference embeddings but no query embedding,
|
1925 |
+
# position at a visible location near the center
|
1926 |
+
if query_embedding is None:
|
1927 |
+
center_coords = {
|
1928 |
+
'x': reference_embeddings['x'].mean(),
|
1929 |
+
'y': reference_embeddings['y'].mean(),
|
1930 |
+
'z': reference_embeddings['z'].mean()
|
1931 |
+
}
|
1932 |
+
return center_coords
|
1933 |
+
|
1934 |
+
# If we have both reference embeddings and query embedding,
|
1935 |
+
# try to position near similar documents
|
1936 |
+
try:
|
1937 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
1938 |
+
|
1939 |
+
# Check if original embeddings are in the dataframe
|
1940 |
+
if 'embedding' in reference_embeddings.columns:
|
1941 |
+
# Get all document embeddings as a 2D array
|
1942 |
+
if isinstance(reference_embeddings['embedding'].iloc[0], list):
|
1943 |
+
doc_embeddings = np.array(reference_embeddings['embedding'].tolist())
|
1944 |
+
else:
|
1945 |
+
doc_embeddings = np.array([emb for emb in reference_embeddings['embedding'].values])
|
1946 |
+
|
1947 |
+
# Reshape query embedding for comparison
|
1948 |
+
query_emb_array = np.array(query_embedding)
|
1949 |
+
if query_emb_array.ndim == 1:
|
1950 |
+
query_emb_array = query_emb_array.reshape(1, -1)
|
1951 |
+
|
1952 |
+
# Calculate cosine similarities
|
1953 |
+
similarities = cosine_similarity(query_emb_array, doc_embeddings)[0]
|
1954 |
+
|
1955 |
+
# Find the closest document
|
1956 |
+
closest_idx = np.argmax(similarities)
|
1957 |
+
|
1958 |
+
# Use the position of the closest document, with slight offset for visibility
|
1959 |
+
query_coords = {
|
1960 |
+
'x': reference_embeddings['x'].iloc[closest_idx] + 0.2,
|
1961 |
+
'y': reference_embeddings['y'].iloc[closest_idx] + 0.2,
|
1962 |
+
'z': reference_embeddings['z'].iloc[closest_idx] + 0.2
|
1963 |
+
}
|
1964 |
+
return query_coords
|
1965 |
+
except Exception as e:
|
1966 |
+
print(f"Error positioning query near similar documents: {e}")
|
1967 |
+
|
1968 |
+
# Fallback to center position if similarity calculation fails
|
1969 |
+
center_coords = {
|
1970 |
+
'x': reference_embeddings['x'].mean(),
|
1971 |
+
'y': reference_embeddings['y'].mean(),
|
1972 |
+
'z': reference_embeddings['z'].mean()
|
1973 |
+
}
|
1974 |
+
return center_coords
|
1975 |
+
return add_query_to_embedding_chart, get_query_coordinates
|
1976 |
+
|
1977 |
+
|
1978 |
+
@app.cell
|
1979 |
+
def combined_chart_visualization(
|
1980 |
+
add_query_to_embedding_chart,
|
1981 |
+
chart_dataframe,
|
1982 |
+
emb_plot,
|
1983 |
+
embedding,
|
1984 |
+
get_query_coordinates,
|
1985 |
+
get_query_state,
|
1986 |
+
query,
|
1987 |
+
set_chart_state,
|
1988 |
+
set_query_state,
|
1989 |
+
):
|
1990 |
+
# Usage with highlight_closest=True
|
1991 |
+
if chart_dataframe is not None and query.value:
|
1992 |
+
# Get the query embedding
|
1993 |
+
query_emb = embedding.embed_documents([query.value])
|
1994 |
+
set_query_state(query_emb)
|
1995 |
+
|
1996 |
+
# Get appropriate coordinates for the query
|
1997 |
+
query_coords = get_query_coordinates(
|
1998 |
+
reference_embeddings=chart_dataframe,
|
1999 |
+
query_embedding=get_query_state()
|
2000 |
+
)
|
2001 |
+
|
2002 |
+
# Add the query to the chart with closest points highlighted
|
2003 |
+
result = add_query_to_embedding_chart(
|
2004 |
+
existing_chart=emb_plot,
|
2005 |
+
query_coords=query_coords,
|
2006 |
+
query_text=query.value,
|
2007 |
+
)
|
2008 |
+
|
2009 |
+
chart_with_query = result
|
2010 |
+
|
2011 |
+
# Create the visualization
|
2012 |
+
combined_viz = mo.ui.plotly(chart_with_query)
|
2013 |
+
set_chart_state(combined_viz)
|
2014 |
+
else:
|
2015 |
+
combined_viz = None
|
2016 |
+
return
|
2017 |
+
|
2018 |
+
|
2019 |
+
@app.cell
|
2020 |
+
def _():
|
2021 |
+
get_range_slider_state, set_range_slider_state = mo.state(None)
|
2022 |
+
return get_range_slider_state, set_range_slider_state
|
2023 |
+
|
2024 |
+
|
2025 |
+
@app.cell
|
2026 |
+
def _(get_range_slider_state):
|
2027 |
+
if get_range_slider_state() is not None:
|
2028 |
+
document_range_stack = get_range_slider_state()
|
2029 |
+
else:
|
2030 |
+
document_range_stack = None
|
2031 |
+
return (document_range_stack,)
|
2032 |
+
|
2033 |
+
|
2034 |
+
@app.cell
|
2035 |
+
def _():
|
2036 |
+
get_chart_state, set_chart_state = mo.state(None)
|
2037 |
+
return get_chart_state, set_chart_state
|
2038 |
+
|
2039 |
+
|
2040 |
+
@app.cell
|
2041 |
+
def _(get_chart_state, query):
|
2042 |
+
if query.value is not None:
|
2043 |
+
chart_visualization = get_chart_state()
|
2044 |
+
else:
|
2045 |
+
chart_visualization = None
|
2046 |
+
return (chart_visualization,)
|
2047 |
+
|
2048 |
+
|
2049 |
+
@app.cell
|
2050 |
+
def c(document_range_stack):
|
2051 |
+
chart_range_selection = mo.hstack([document_range_stack], justify="space-around", align="center", widths=[0.65])
|
2052 |
+
return (chart_range_selection,)
|
2053 |
+
|
2054 |
+
|
2055 |
+
if __name__ == "__main__":
|
2056 |
+
app.run()
|