File size: 8,897 Bytes
dfb2f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import time
import random
import scipy.stats

@st.cache_resource
def init_conn():
          scope = ['https://www.googleapis.com/auth/spreadsheets',
                    "https://www.googleapis.com/auth/drive"]
          
          credentials = {
            "type": "service_account",
            "project_id": "sheets-api-connect-378620",
            "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
            "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
            "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
            "client_id": "106625872877651920064",
            "auth_uri": "https://accounts.google.com/o/oauth2/auth",
            "token_uri": "https://oauth2.googleapis.com/token",
            "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
            "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
          }

          gc = gspread.service_account_from_dict(credentials)
          return gc

st.set_page_config(layout="wide")

gc = init_conn()

game_format = {'Dropback% Proj': '{:.2%}', 'DesRush%': '{:.2%}', 'Rush%': '{:.2%}'}

rb_util = {'Player Snaps%': '{:.2%}','Rush Att%': '{:.2%}', 'Routes%': '{:.2%}', 'Targets%': '{:.2%}', 'SDD Snaps%': '{:.2%}', 'i5 Rush%': '{:.2%}',
                   'LDD Snaps%': '{:.2%}','2-min%': '{:.2%}'}

wr_te_util = {'Routes%': '{:.2%}','Targets%': '{:.2%}', 'Air Yards%': '{:.2%}', 'Endzone Targets%': '{:.2%}', 'Third/Fourth%': '{:.2%}', 'Third/Fourth Targets%': '{:.2%}',
                   'Play Action Targets%': '{:.2%}','2-min%': '{:.2%}'}

all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'

@st.cache_resource(ttl = 300)
def rb_util_season():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('RB_Util')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.replace('', np.nan)      
    raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
                               'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
    raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
                               'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
    raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
    return raw_display

@st.cache_resource(ttl = 300)
def wr_te_util_season():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('WR_TE_Util')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.replace('', np.nan)      
    raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
                               'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
    raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
                               'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
    raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
    return raw_display

@st.cache_resource(ttl = 300)
def macro_pull():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('FL_Macro')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.sort_values(by='Team Total', ascending=False)      

    return raw_display

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

rb_search = rb_util_season()
wr_search = wr_te_util_season()
macro_data = macro_pull()
pos_list = ['RB', 'WR', 'TE']

col1, col2 = st.columns([1, 8])

with col1:
    if st.button("Load/Reset Data", key='reset1'):
          st.cache_data.clear()
          rb_search = rb_util_season()
          wr_search = wr_te_util_season()
          macro_data = macro_pull()
    stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage', 'WR/TE Usage'), key='stat_type_var1')
    split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
    pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')      
    if pos_split1 == 'Specific Positions':
        pos_var1 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
    elif pos_split1 == 'All Positions':
        pos_var1 = pos_list 
    if split_var1 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = rb_search['Team-Season'].unique(), key='team_var1')
    elif split_var1 == 'All Teams':
        team_var1 = rb_search['Team-Season'].unique().tolist()
    if stat_type_var1 == 'Macro Table':
        table_instance = macro_data
        table_instance = table_instance.set_index('team')  
    elif stat_type_var1 == 'RB Usage':
        table_instance = rb_search
        table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]  
        table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
    elif stat_type_var1 == 'WR/TE Usage':
        table_instance = wr_search    
        table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]  
        table_instance = table_instance[table_instance['Position'].isin(pos_var1)]

with col2:
    if stat_type_var1 == 'Macro Table':
        st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
    elif stat_type_var1 == 'RB Usage':
        st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
    elif stat_type_var1 == 'WR/TE Usage':
        st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)

    st.download_button(
                    label="Export Tables",
                    data=convert_df_to_csv(table_instance),
                    file_name='MLB_Research_export.csv',
                    mime='text/csv',
    )