Multichem commited on
Commit
dfb2f96
·
1 Parent(s): 4d9f17c

Upload streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +133 -0
streamlit_app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import streamlit as st
5
+ import gspread
6
+ import time
7
+ import random
8
+ import scipy.stats
9
+
10
+ @st.cache_resource
11
+ def init_conn():
12
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
13
+ "https://www.googleapis.com/auth/drive"]
14
+
15
+ credentials = {
16
+ "type": "service_account",
17
+ "project_id": "sheets-api-connect-378620",
18
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
19
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
20
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
21
+ "client_id": "106625872877651920064",
22
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
23
+ "token_uri": "https://oauth2.googleapis.com/token",
24
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
25
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
26
+ }
27
+
28
+ gc = gspread.service_account_from_dict(credentials)
29
+ return gc
30
+
31
+ st.set_page_config(layout="wide")
32
+
33
+ gc = init_conn()
34
+
35
+ game_format = {'Dropback% Proj': '{:.2%}', 'DesRush%': '{:.2%}', 'Rush%': '{:.2%}'}
36
+
37
+ rb_util = {'Player Snaps%': '{:.2%}','Rush Att%': '{:.2%}', 'Routes%': '{:.2%}', 'Targets%': '{:.2%}', 'SDD Snaps%': '{:.2%}', 'i5 Rush%': '{:.2%}',
38
+ 'LDD Snaps%': '{:.2%}','2-min%': '{:.2%}'}
39
+
40
+ wr_te_util = {'Routes%': '{:.2%}','Targets%': '{:.2%}', 'Air Yards%': '{:.2%}', 'Endzone Targets%': '{:.2%}', 'Third/Fourth%': '{:.2%}', 'Third/Fourth Targets%': '{:.2%}',
41
+ 'Play Action Targets%': '{:.2%}','2-min%': '{:.2%}'}
42
+
43
+ all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'
44
+
45
+ @st.cache_resource(ttl = 300)
46
+ def rb_util_season():
47
+ sh = gc.open_by_url(all_dk_player_projections)
48
+ worksheet = sh.worksheet('RB_Util')
49
+ raw_display = pd.DataFrame(worksheet.get_all_records())
50
+ raw_display = raw_display.replace('', np.nan)
51
+ raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
52
+ 'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
53
+ raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
54
+ 'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
55
+ raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
56
+ return raw_display
57
+
58
+ @st.cache_resource(ttl = 300)
59
+ def wr_te_util_season():
60
+ sh = gc.open_by_url(all_dk_player_projections)
61
+ worksheet = sh.worksheet('WR_TE_Util')
62
+ raw_display = pd.DataFrame(worksheet.get_all_records())
63
+ raw_display = raw_display.replace('', np.nan)
64
+ raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
65
+ 'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
66
+ raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
67
+ 'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
68
+ raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
69
+ return raw_display
70
+
71
+ @st.cache_resource(ttl = 300)
72
+ def macro_pull():
73
+ sh = gc.open_by_url(all_dk_player_projections)
74
+ worksheet = sh.worksheet('FL_Macro')
75
+ raw_display = pd.DataFrame(worksheet.get_all_records())
76
+ raw_display = raw_display.sort_values(by='Team Total', ascending=False)
77
+
78
+ return raw_display
79
+
80
+ @st.cache_data
81
+ def convert_df_to_csv(df):
82
+ return df.to_csv().encode('utf-8')
83
+
84
+ rb_search = rb_util_season()
85
+ wr_search = wr_te_util_season()
86
+ macro_data = macro_pull()
87
+ pos_list = ['RB', 'WR', 'TE']
88
+
89
+ col1, col2 = st.columns([1, 8])
90
+
91
+ with col1:
92
+ if st.button("Load/Reset Data", key='reset1'):
93
+ st.cache_data.clear()
94
+ rb_search = rb_util_season()
95
+ wr_search = wr_te_util_season()
96
+ macro_data = macro_pull()
97
+ stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage', 'WR/TE Usage'), key='stat_type_var1')
98
+ split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
99
+ pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
100
+ if pos_split1 == 'Specific Positions':
101
+ pos_var1 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
102
+ elif pos_split1 == 'All Positions':
103
+ pos_var1 = pos_list
104
+ if split_var1 == 'Specific Teams':
105
+ team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = rb_search['Team-Season'].unique(), key='team_var1')
106
+ elif split_var1 == 'All Teams':
107
+ team_var1 = rb_search['Team-Season'].unique().tolist()
108
+ if stat_type_var1 == 'Macro Table':
109
+ table_instance = macro_data
110
+ table_instance = table_instance.set_index('team')
111
+ elif stat_type_var1 == 'RB Usage':
112
+ table_instance = rb_search
113
+ table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
114
+ table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
115
+ elif stat_type_var1 == 'WR/TE Usage':
116
+ table_instance = wr_search
117
+ table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
118
+ table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
119
+
120
+ with col2:
121
+ if stat_type_var1 == 'Macro Table':
122
+ st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
123
+ elif stat_type_var1 == 'RB Usage':
124
+ st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
125
+ elif stat_type_var1 == 'WR/TE Usage':
126
+ st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
127
+
128
+ st.download_button(
129
+ label="Export Tables",
130
+ data=convert_df_to_csv(table_instance),
131
+ file_name='MLB_Research_export.csv',
132
+ mime='text/csv',
133
+ )