Spaces:
Running
Running
File size: 10,210 Bytes
4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 42638f9 4cc0ea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import re
import json
import time
import tempfile
from typing import Dict, Any, List, Optional
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from huggingface_hub import login
from src.prompts import SUMMARY_PROMPT_TEMPLATE, QUIZ_PROMPT_TEMPLATE
GEMINI_MODEL = "gemini-2.0-flash"
DEFAULT_TEMPERATURE = 0.7
TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"
hf_token = os.environ.get('HF_TOKEN', None)
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
def clean_text(text):
text = re.sub(r'\[speaker_\d+\]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def split_text_by_tokens(text, max_tokens=12000):
text = clean_text(text)
tokens = tokenizer.encode(text)
if len(tokens) <= max_tokens:
return [text]
split_point = len(tokens) // 2
sentences = re.split(r'(?<=[.!?])\s+', text)
first_half = []
second_half = []
current_tokens = 0
for sentence in sentences:
sentence_tokens = len(tokenizer.encode(sentence))
if current_tokens + sentence_tokens <= split_point:
first_half.append(sentence)
current_tokens += sentence_tokens
else:
second_half.append(sentence)
return [" ".join(first_half), " ".join(second_half)]
def generate_with_gemini(text, api_key, language, content_type="summary"):
from langchain_google_genai import ChatGoogleGenerativeAI
os.environ["GOOGLE_API_KEY"] = api_key
llm = ChatGoogleGenerativeAI(
model=GEMINI_MODEL,
temperature=DEFAULT_TEMPERATURE,
max_retries=3
)
if content_type == "summary":
base_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=text)
else:
base_prompt = QUIZ_PROMPT_TEMPLATE.format(text=text)
language_instruction = f"\nIMPORTANT: Generate ALL content in {language} language."
prompt = base_prompt + language_instruction
try:
messages = [
{"role": "system", "content": "You are a helpful AI assistant that creates high-quality text summaries and quizzes."},
{"role": "user", "content": prompt}
]
response = llm.invoke(messages)
try:
content = response.content
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
if json_match:
json_str = json_match.group(1)
else:
json_match = re.search(r'(\{[\s\S]*\})', content)
if json_match:
json_str = json_match.group(1)
else:
json_str = content
# Parse the JSON
function_call = json.loads(json_str)
return function_call
except json.JSONDecodeError:
raise Exception("Could not parse JSON from LLM response")
except Exception as e:
raise Exception(f"Error calling API: {str(e)}")
def format_summary_for_display(results, language="English"):
output = []
if language == "Uzbek":
title_header = "SARLAVHA"
overview_header = "UMUMIY KO'RINISH"
key_points_header = "ASOSIY NUQTALAR"
key_entities_header = "ASOSIY SHAXSLAR VA TUSHUNCHALAR"
conclusion_header = "XULOSA"
elif language == "Russian":
title_header = "ЗАГОЛОВОК"
overview_header = "ОБЗОР"
key_points_header = "КЛЮЧЕВЫЕ МОМЕНТЫ"
key_entities_header = "КЛЮЧЕВЫЕ ОБЪЕКТЫ"
conclusion_header = "ЗАКЛЮЧЕНИЕ"
else:
title_header = "TITLE"
overview_header = "OVERVIEW"
key_points_header = "KEY POINTS"
key_entities_header = "KEY ENTITIES"
conclusion_header = "CONCLUSION"
if "summary" not in results:
if "segments" in results:
segments = results.get("segments", [])
for i, segment in enumerate(segments):
topic = segment.get("topic_name", f"Section {i+1}")
segment_num = i + 1
output.append(f"\n\n{'='*40}")
output.append(f"SEGMENT {segment_num}: {topic}")
output.append(f"{'='*40}\n")
if "key_concepts" in segment:
output.append("KEY CONCEPTS:")
for concept in segment["key_concepts"]:
output.append(f"• {concept}")
if "summary" in segment:
output.append("\nSUMMARY:")
output.append(segment["summary"])
return "\n".join(output)
else:
return "Error: Could not parse summary results. Invalid format received."
summary = results["summary"]
if "title" in summary:
output.append(f"\n\n{'='*40}")
output.append(f"{title_header}: {summary['title']}")
output.append(f"{'='*40}\n")
# Overview
if "overview" in summary:
output.append(f"{overview_header}:")
output.append(f"{summary['overview']}\n")
# Key Points
if "key_points" in summary and summary["key_points"]:
output.append(f"{key_points_header}:")
for theme_group in summary["key_points"]:
if "theme" in theme_group:
output.append(f"\n{theme_group['theme']}:")
if "points" in theme_group:
for point in theme_group["points"]:
output.append(f"• {point}")
# Key Entities
if "key_entities" in summary and summary["key_entities"]:
output.append(f"\n{key_entities_header}:")
for entity in summary["key_entities"]:
if "name" in entity and "description" in entity:
output.append(f"• **{entity['name']}**: {entity['description']}")
# Conclusion
if "conclusion" in summary:
output.append(f"\n{conclusion_header}:")
output.append(summary["conclusion"])
return "\n".join(output)
def format_quiz_for_display(results, language="English"):
output = []
if language == "Uzbek":
quiz_questions_header = "TEST SAVOLLARI"
elif language == "Russian":
quiz_questions_header = "ТЕСТОВЫЕ ВОПРОСЫ"
else:
quiz_questions_header = "QUIZ QUESTIONS"
output.append(f"{'='*40}")
output.append(f"{quiz_questions_header}")
output.append(f"{'='*40}\n")
quiz_questions = results.get("quiz_questions", [])
for i, q in enumerate(quiz_questions):
output.append(f"\n{i+1}. {q['question']}")
for j, option in enumerate(q['options']):
letter = chr(97 + j).upper()
correct_marker = " ✓" if option["correct"] else ""
output.append(f" {letter}. {option['text']}{correct_marker}")
return "\n".join(output)
def analyze_document(text, gemini_api_key, language, content_type="summary"):
try:
start_time = time.time()
text_parts = split_text_by_tokens(text)
input_tokens = 0
output_tokens = 0
if content_type == "summary":
all_results = {}
for part in text_parts:
actual_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=part)
prompt_tokens = len(tokenizer.encode(actual_prompt))
input_tokens += prompt_tokens
analysis = generate_with_gemini(part, gemini_api_key, language, "summary")
if not all_results and "summary" in analysis:
all_results = analysis
elif "summary" in analysis:
if "key_points" in analysis["summary"] and "key_points" in all_results["summary"]:
all_results["summary"]["key_points"].extend(analysis["summary"]["key_points"])
if "key_entities" in analysis["summary"] and "key_entities" in all_results["summary"]:
all_results["summary"]["key_entities"].extend(analysis["summary"]["key_entities"])
formatted_output = format_summary_for_display(all_results, language)
else:
all_results = {"quiz_questions": []}
for part in text_parts:
actual_prompt = QUIZ_PROMPT_TEMPLATE.format(text=part)
prompt_tokens = len(tokenizer.encode(actual_prompt))
input_tokens += prompt_tokens
analysis = generate_with_gemini(part, gemini_api_key, language, "quiz")
if "quiz_questions" in analysis:
remaining_slots = 10 - len(all_results["quiz_questions"])
if remaining_slots > 0:
questions_to_add = analysis["quiz_questions"][:remaining_slots]
all_results["quiz_questions"].extend(questions_to_add)
formatted_output = format_quiz_for_display(all_results, language)
end_time = time.time()
total_time = end_time - start_time
output_tokens = len(tokenizer.encode(formatted_output))
token_info = f"Input tokens: {input_tokens}\nOutput tokens: {output_tokens}\nTotal tokens: {input_tokens + output_tokens}\n"
formatted_text = f"Total Processing time: {total_time:.2f}s\n{token_info}\n" + formatted_output
json_path = tempfile.mktemp(suffix='.json')
with open(json_path, 'w', encoding='utf-8') as json_file:
json.dump(all_results, json_file, indent=2)
txt_path = tempfile.mktemp(suffix='.txt')
with open(txt_path, 'w', encoding='utf-8') as txt_file:
txt_file.write(formatted_text)
return formatted_text, json_path, txt_path
except Exception as e:
error_message = f"Error processing document: {str(e)}"
return error_message, None, None |