Spaces:
Running
Running
Upload 8 files
Browse files- src/__init__.py +0 -0
- src/audioProcessing.py +57 -0
- src/documentProcessing.py +61 -0
- src/mainFunctions.py +146 -0
- src/prompts.py +96 -0
- src/quiz_processing.py +218 -0
- src/quiz_processing_1.py +297 -0
- src/video_processing.py +96 -0
src/__init__.py
ADDED
File without changes
|
src/audioProcessing.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
import uuid
|
6 |
+
from typing import Tuple, Optional, Dict, Any
|
7 |
+
|
8 |
+
def transcribe_audio(audio_file, api_key, model_id="scribe_v1"):
|
9 |
+
if not api_key:
|
10 |
+
return {"error": "Please provide an API key"}
|
11 |
+
url = "https://api.elevenlabs.io/v1/speech-to-text"
|
12 |
+
headers = {
|
13 |
+
"xi-api-key": api_key
|
14 |
+
}
|
15 |
+
files = {
|
16 |
+
"file": open(audio_file, "rb"),
|
17 |
+
"model_id": (None, model_id)
|
18 |
+
}
|
19 |
+
try:
|
20 |
+
response = requests.post(url, headers=headers, files=files)
|
21 |
+
response.raise_for_status()
|
22 |
+
result = response.json()
|
23 |
+
return result
|
24 |
+
except requests.exceptions.RequestException as e:
|
25 |
+
return {"error": f"API request failed: {str(e)}"}
|
26 |
+
except json.JSONDecodeError:
|
27 |
+
return {"error": "Failed to parse API response"}
|
28 |
+
finally:
|
29 |
+
files["file"].close()
|
30 |
+
|
31 |
+
def save_transcription(transcription):
|
32 |
+
if "error" in transcription:
|
33 |
+
return None, transcription["error"]
|
34 |
+
transcript_filename = f"transcription_{uuid.uuid4().hex[:8]}.txt"
|
35 |
+
try:
|
36 |
+
with open(transcript_filename, "w", encoding="utf-8") as f:
|
37 |
+
f.write(transcription.get('text', 'No text found'))
|
38 |
+
return transcript_filename, "Transcription saved as text file"
|
39 |
+
except Exception as e:
|
40 |
+
return None, f"Error saving transcription: {str(e)}"
|
41 |
+
|
42 |
+
def process_audio_file(audio_file, elevenlabs_api_key, model_id="scribe_v1") -> Tuple[str, str, str]:
|
43 |
+
if not elevenlabs_api_key:
|
44 |
+
return None, "ElevenLabs API key is required for transcription", None
|
45 |
+
|
46 |
+
transcription_result = transcribe_audio(audio_file, elevenlabs_api_key, model_id)
|
47 |
+
|
48 |
+
if "error" in transcription_result:
|
49 |
+
return None, transcription_result["error"], None
|
50 |
+
|
51 |
+
transcript_text = transcription_result.get('text', '')
|
52 |
+
transcript_path = tempfile.mktemp(suffix='.txt')
|
53 |
+
|
54 |
+
with open(transcript_path, 'w', encoding='utf-8') as transcript_file:
|
55 |
+
transcript_file.write(transcript_text)
|
56 |
+
|
57 |
+
return transcript_path, f"Transcription completed successfully. Length: {len(transcript_text)} characters.", transcript_text
|
src/documentProcessing.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import docx
|
2 |
+
import PyPDF2
|
3 |
+
|
4 |
+
def extract_text_from_pdf(pdf_path):
|
5 |
+
text = ""
|
6 |
+
try:
|
7 |
+
with open(pdf_path, 'rb') as file:
|
8 |
+
reader = PyPDF2.PdfReader(file)
|
9 |
+
for page_num in range(len(reader.pages)):
|
10 |
+
text += reader.pages[page_num].extract_text() + "\n"
|
11 |
+
return text
|
12 |
+
except Exception as e:
|
13 |
+
raise Exception(f"Error extracting text from PDF: {str(e)}")
|
14 |
+
|
15 |
+
def extract_text_from_docx(docx_path):
|
16 |
+
try:
|
17 |
+
doc = docx.Document(docx_path)
|
18 |
+
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
19 |
+
return text
|
20 |
+
except Exception as e:
|
21 |
+
raise Exception(f"Error extracting text from DOCX: {str(e)}")
|
22 |
+
|
23 |
+
def extract_text_from_txt(txt_path):
|
24 |
+
try:
|
25 |
+
with open(txt_path, 'r', encoding='utf-8') as file:
|
26 |
+
text = file.read()
|
27 |
+
return text
|
28 |
+
except Exception as e:
|
29 |
+
raise Exception(f"Error extracting text from TXT: {str(e)}")
|
30 |
+
|
31 |
+
def process_document(document_path, gemini_api_key, language, content_type):
|
32 |
+
try:
|
33 |
+
temp_file = tempfile.mktemp(suffix=os.path.splitext(document_path.name)[-1])
|
34 |
+
with open(temp_file, 'wb') as f:
|
35 |
+
f.write(document_path.read())
|
36 |
+
|
37 |
+
file_extension = os.path.splitext(document_path.name)[-1].lower()
|
38 |
+
if file_extension == '.pdf':
|
39 |
+
text = extract_text_from_pdf(temp_file)
|
40 |
+
elif file_extension == '.docx':
|
41 |
+
text = extract_text_from_docx(temp_file)
|
42 |
+
elif file_extension == '.txt':
|
43 |
+
text = extract_text_from_txt(temp_file)
|
44 |
+
else:
|
45 |
+
raise Exception(f"Unsupported file type: {file_extension}")
|
46 |
+
|
47 |
+
text_file_path = tempfile.mktemp(suffix='.txt')
|
48 |
+
with open(text_file_path, 'w', encoding='utf-8') as f:
|
49 |
+
f.write(text)
|
50 |
+
|
51 |
+
formatted_output, json_path, txt_path = analyze_document(
|
52 |
+
text,
|
53 |
+
gemini_api_key,
|
54 |
+
language,
|
55 |
+
content_type
|
56 |
+
)
|
57 |
+
|
58 |
+
return f"Document processed successfully", text_file_path, formatted_output, txt_path, json_path
|
59 |
+
except Exception as e:
|
60 |
+
error_message = f"Error processing document: {str(e)}"
|
61 |
+
return error_message, None, error_message, None, None
|
src/mainFunctions.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import subprocess
|
4 |
+
from typing import Optional, Tuple, List
|
5 |
+
import pytube
|
6 |
+
from src.video_processing import extract_audio_from_video
|
7 |
+
from src.quiz_processing import analyze_document
|
8 |
+
import docx
|
9 |
+
import PyPDF2
|
10 |
+
import re
|
11 |
+
|
12 |
+
|
13 |
+
def parse_quiz_content(quiz_text):
|
14 |
+
questions = []
|
15 |
+
lines = quiz_text.split('\n')
|
16 |
+
current_question = None
|
17 |
+
|
18 |
+
for line in lines:
|
19 |
+
line = line.strip()
|
20 |
+
if not line:
|
21 |
+
continue
|
22 |
+
|
23 |
+
q_match = re.match(r'^(?:\d+\.|\[?Q\d+\]?\.?)\s+(.*)', line, re.IGNORECASE)
|
24 |
+
if q_match:
|
25 |
+
if current_question:
|
26 |
+
questions.append(current_question)
|
27 |
+
current_question = {"question": q_match.group(1), "answer": ""}
|
28 |
+
elif current_question and line.lower().startswith(("answer:", "a:", "ans:")):
|
29 |
+
answer_text = re.sub(r'^(?:answer:|a:|ans:)\s*', '', line, flags=re.IGNORECASE)
|
30 |
+
current_question["answer"] = answer_text.strip()
|
31 |
+
|
32 |
+
if current_question:
|
33 |
+
questions.append(current_question)
|
34 |
+
|
35 |
+
return {"questions": questions}
|
36 |
+
|
37 |
+
|
38 |
+
def transcribe_audio(audio_path, elevenlabs_api_key, model_id):
|
39 |
+
import requests
|
40 |
+
import json
|
41 |
+
|
42 |
+
try:
|
43 |
+
with open(audio_path, 'rb') as audio_file:
|
44 |
+
response = requests.post(
|
45 |
+
'https://api.elevenlabs.io/v1/transcribe',
|
46 |
+
headers={'xi-api-key': elevenlabs_api_key},
|
47 |
+
files={'audio': audio_file},
|
48 |
+
data={'model_id': model_id}
|
49 |
+
)
|
50 |
+
|
51 |
+
if response.status_code == 200:
|
52 |
+
transcription = response.json().get('transcription', '')
|
53 |
+
|
54 |
+
transcript_path = tempfile.mktemp(suffix='.txt')
|
55 |
+
with open(transcript_path, 'w', encoding='utf-8') as f:
|
56 |
+
f.write(transcription)
|
57 |
+
|
58 |
+
return transcription, transcript_path, "Transcription completed successfully"
|
59 |
+
else:
|
60 |
+
return None, None, f"Transcription failed: {response.text}"
|
61 |
+
except Exception as e:
|
62 |
+
return None, None, f"Transcription error: {str(e)}"
|
63 |
+
|
64 |
+
def process_video_file(video_path, audio_format, elevenlabs_api_key, model_id, gemini_api_key, language, content_type):
|
65 |
+
try:
|
66 |
+
audio_path = extract_audio_from_video(video_path, audio_format)
|
67 |
+
|
68 |
+
transcription, transcript_path, transcription_status = transcribe_audio(
|
69 |
+
audio_path,
|
70 |
+
elevenlabs_api_key,
|
71 |
+
model_id
|
72 |
+
)
|
73 |
+
|
74 |
+
if not transcription:
|
75 |
+
return audio_path, "Audio extracted, but transcription failed", None, transcription_status, None, None, None
|
76 |
+
|
77 |
+
formatted_output, json_path, txt_path = analyze_document(
|
78 |
+
transcription,
|
79 |
+
gemini_api_key,
|
80 |
+
language,
|
81 |
+
content_type
|
82 |
+
)
|
83 |
+
|
84 |
+
return audio_path, "Processing completed successfully", transcript_path, transcription_status, formatted_output, txt_path, json_path
|
85 |
+
except Exception as e:
|
86 |
+
error_message = f"Error processing video: {str(e)}"
|
87 |
+
return None, error_message, None, error_message, error_message, None, None
|
88 |
+
|
89 |
+
def process_youtube_video(youtube_url, audio_format, elevenlabs_api_key, model_id, gemini_api_key, language, content_type):
|
90 |
+
try:
|
91 |
+
yt = pytube.YouTube(youtube_url)
|
92 |
+
stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
|
93 |
+
|
94 |
+
if not stream:
|
95 |
+
raise Exception("No suitable video stream found")
|
96 |
+
|
97 |
+
# Download to temporary file
|
98 |
+
video_path = tempfile.mktemp(suffix='.mp4')
|
99 |
+
stream.download(filename=video_path)
|
100 |
+
audio_path = extract_audio_from_video(video_path, audio_format)
|
101 |
+
|
102 |
+
transcription, transcript_path, transcription_status = transcribe_audio(
|
103 |
+
audio_path,
|
104 |
+
elevenlabs_api_key,
|
105 |
+
model_id
|
106 |
+
)
|
107 |
+
|
108 |
+
if not transcription:
|
109 |
+
return audio_path, "Audio extracted, but transcription failed", None, transcription_status, None, None, None
|
110 |
+
|
111 |
+
formatted_output, json_path, txt_path = analyze_document(
|
112 |
+
transcription,
|
113 |
+
gemini_api_key,
|
114 |
+
language,
|
115 |
+
content_type
|
116 |
+
)
|
117 |
+
|
118 |
+
return audio_path, "Processing completed successfully", transcript_path, transcription_status, formatted_output, txt_path, json_path
|
119 |
+
except Exception as e:
|
120 |
+
error_message = f"Error processing YouTube video: {str(e)}"
|
121 |
+
return None, error_message, None, error_message, error_message, None, None
|
122 |
+
|
123 |
+
def process_audio_document(audio_path, elevenlabs_api_key, model_id, gemini_api_key, language, content_type):
|
124 |
+
"""Process an audio file - transcribe and generate summary or quiz."""
|
125 |
+
try:
|
126 |
+
transcription, transcript_path, transcription_status = transcribe_audio(
|
127 |
+
audio_path,
|
128 |
+
elevenlabs_api_key,
|
129 |
+
model_id
|
130 |
+
)
|
131 |
+
|
132 |
+
if not transcription:
|
133 |
+
return "Transcription failed", None, None, None, None
|
134 |
+
|
135 |
+
formatted_output, json_path, txt_path = analyze_document(
|
136 |
+
transcription,
|
137 |
+
gemini_api_key,
|
138 |
+
language,
|
139 |
+
content_type
|
140 |
+
)
|
141 |
+
|
142 |
+
return "Processing completed successfully", transcript_path, formatted_output, txt_path, json_path
|
143 |
+
except Exception as e:
|
144 |
+
error_message = f"Error processing audio: {str(e)}"
|
145 |
+
return error_message, None, error_message, None, None
|
146 |
+
|
src/prompts.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM_PROMPT = """You are an expert educational content analyzer. Your task is to analyze text content,
|
2 |
+
identify distinct segments, and create high-quality educational quiz questions for each segment."""
|
3 |
+
|
4 |
+
SUMMARY_PROMPT_TEMPLATE = """
|
5 |
+
You are an expert content analyst specialized in creating professional, actionable summaries of educational content.
|
6 |
+
|
7 |
+
Please analyze the following text to create a comprehensive yet concise summary that will be valuable to readers. Your summary should:
|
8 |
+
|
9 |
+
1. Begin with a brief overview of the main topic and its significance (2-3 sentences)
|
10 |
+
2. Identify and clearly highlight the most important concepts, names, places, and technical terms using markdown formatting (bold for key terms, italics for definitions)
|
11 |
+
3. Present key information in organized bullet points grouped by theme or concept
|
12 |
+
4. Include specific supporting details, examples, statistics, or quotes that enhance understanding
|
13 |
+
5. End with the practical implications or conclusions that can be drawn from the content
|
14 |
+
|
15 |
+
The text to analyze is:
|
16 |
+
{text}
|
17 |
+
|
18 |
+
Respond with a properly formatted JSON object according to this schema:
|
19 |
+
{{
|
20 |
+
"summary": {{
|
21 |
+
"title": "A clear, descriptive title for the content",
|
22 |
+
"overview": "A concise overview paragraph introducing the main topic",
|
23 |
+
"key_points": [
|
24 |
+
{{
|
25 |
+
"theme": "First major theme or concept",
|
26 |
+
"points": [
|
27 |
+
"First key bullet point with important terms highlighted",
|
28 |
+
"Second key bullet point with contextual information",
|
29 |
+
"Third key bullet point with specific details or examples"
|
30 |
+
]
|
31 |
+
}},
|
32 |
+
{{
|
33 |
+
"theme": "Second major theme or concept",
|
34 |
+
"points": [
|
35 |
+
"First key bullet point for this theme",
|
36 |
+
"Second key bullet point for this theme",
|
37 |
+
"Additional bullet points as needed"
|
38 |
+
]
|
39 |
+
}}
|
40 |
+
],
|
41 |
+
"key_entities": [
|
42 |
+
{{
|
43 |
+
"name": "Name of person, place, or organization",
|
44 |
+
"description": "Brief description of their relevance"
|
45 |
+
}},
|
46 |
+
{{
|
47 |
+
"name": "Another key entity",
|
48 |
+
"description": "Brief description of their relevance"
|
49 |
+
}}
|
50 |
+
],
|
51 |
+
"conclusion": "A concise statement summarizing the main implications or takeaways"
|
52 |
+
}}
|
53 |
+
}}
|
54 |
+
|
55 |
+
Focus on creating a summary that is immediately useful, visually scannable, and highlights the most important information. Use markdown formatting strategically to make the summary more readable and engaging.
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
QUIZ_PROMPT_TEMPLATE = """
|
60 |
+
You are an expert quiz creator specialized in creating educational assessments.
|
61 |
+
Please analyze the following text and create 10 multiple-choice quiz questions that test understanding of the key concepts and information presented in the text. For each question:
|
62 |
+
1. Write a clear, concise question
|
63 |
+
2. Create 4 answer options (A, B, C, D)
|
64 |
+
The text to analyze is:
|
65 |
+
{text}
|
66 |
+
Respond with a properly formatted JSON object according to this schema:
|
67 |
+
|
68 |
+
{{
|
69 |
+
"quiz_questions": [
|
70 |
+
{{
|
71 |
+
"question": "The full text of the question?",
|
72 |
+
"options": [
|
73 |
+
{{
|
74 |
+
"text": "First option text",
|
75 |
+
"correct": false
|
76 |
+
}},
|
77 |
+
{{
|
78 |
+
"text": "Second option text",
|
79 |
+
"correct": true
|
80 |
+
}},
|
81 |
+
{{
|
82 |
+
"text": "Third option text",
|
83 |
+
"correct": false
|
84 |
+
}},
|
85 |
+
{{
|
86 |
+
"text": "Fourth option text",
|
87 |
+
"correct": false
|
88 |
+
}}
|
89 |
+
]
|
90 |
+
}},
|
91 |
+
... additional questions ...
|
92 |
+
]
|
93 |
+
}}
|
94 |
+
|
95 |
+
Create questions that test different levels of understanding, from recall of facts to application of concepts. Ensure the questions cover the most important information from the text.
|
96 |
+
"""
|
src/quiz_processing.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import tempfile
|
6 |
+
from typing import Dict, Any, List, Optional
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from huggingface_hub import login
|
10 |
+
|
11 |
+
GEMINI_MODEL = "gemini-2.0-flash"
|
12 |
+
DEFAULT_TEMPERATURE = 0.7
|
13 |
+
|
14 |
+
TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
|
15 |
+
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"
|
16 |
+
|
17 |
+
hf_token = os.environ.get('HF_TOKEN', None)
|
18 |
+
login(token=hf_token)
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
|
21 |
+
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
|
22 |
+
|
23 |
+
def clean_text(text):
|
24 |
+
text = re.sub(r'\[speaker_\d+\]', '', text)
|
25 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
26 |
+
return text
|
27 |
+
|
28 |
+
def split_text_by_tokens(text, max_tokens=12000):
|
29 |
+
text = clean_text(text)
|
30 |
+
tokens = tokenizer.encode(text)
|
31 |
+
|
32 |
+
if len(tokens) <= max_tokens:
|
33 |
+
return [text]
|
34 |
+
|
35 |
+
split_point = len(tokens) // 2
|
36 |
+
|
37 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
38 |
+
|
39 |
+
first_half = []
|
40 |
+
second_half = []
|
41 |
+
|
42 |
+
current_tokens = 0
|
43 |
+
for sentence in sentences:
|
44 |
+
sentence_tokens = len(tokenizer.encode(sentence))
|
45 |
+
|
46 |
+
if current_tokens + sentence_tokens <= split_point:
|
47 |
+
first_half.append(sentence)
|
48 |
+
current_tokens += sentence_tokens
|
49 |
+
else:
|
50 |
+
second_half.append(sentence)
|
51 |
+
|
52 |
+
return [" ".join(first_half), " ".join(second_half)]
|
53 |
+
|
54 |
+
def generate_with_gemini(text, api_key, language, content_type="summary"):
|
55 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
56 |
+
os.environ["GOOGLE_API_KEY"] = api_key
|
57 |
+
llm = ChatGoogleGenerativeAI(
|
58 |
+
model=GEMINI_MODEL,
|
59 |
+
temperature=DEFAULT_TEMPERATURE,
|
60 |
+
max_retries=3
|
61 |
+
)
|
62 |
+
|
63 |
+
if content_type == "summary":
|
64 |
+
base_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=text)
|
65 |
+
else:
|
66 |
+
base_prompt = QUIZ_PROMPT_TEMPLATE.format(text=text)
|
67 |
+
|
68 |
+
language_instruction = f"\nIMPORTANT: Generate ALL content in {language} language."
|
69 |
+
prompt = base_prompt + language_instruction
|
70 |
+
|
71 |
+
try:
|
72 |
+
messages = [
|
73 |
+
{"role": "system", "content": "You are a helpful AI assistant that creates high-quality text summaries and quizzes."},
|
74 |
+
{"role": "user", "content": prompt}
|
75 |
+
]
|
76 |
+
|
77 |
+
response = llm.invoke(messages)
|
78 |
+
|
79 |
+
try:
|
80 |
+
content = response.content
|
81 |
+
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
|
82 |
+
|
83 |
+
if json_match:
|
84 |
+
json_str = json_match.group(1)
|
85 |
+
else:
|
86 |
+
json_match = re.search(r'(\{[\s\S]*\})', content)
|
87 |
+
if json_match:
|
88 |
+
json_str = json_match.group(1)
|
89 |
+
else:
|
90 |
+
json_str = content
|
91 |
+
|
92 |
+
# Parse the JSON
|
93 |
+
function_call = json.loads(json_str)
|
94 |
+
return function_call
|
95 |
+
except json.JSONDecodeError:
|
96 |
+
raise Exception("Could not parse JSON from LLM response")
|
97 |
+
except Exception as e:
|
98 |
+
raise Exception(f"Error calling API: {str(e)}")
|
99 |
+
|
100 |
+
def format_summary_for_display(results, language="English"):
|
101 |
+
output = []
|
102 |
+
|
103 |
+
if language == "Uzbek":
|
104 |
+
segment_header = "QISM"
|
105 |
+
key_concepts_header = "ASOSIY TUSHUNCHALAR"
|
106 |
+
summary_header = "QISQACHA MAZMUN"
|
107 |
+
elif language == "Russian":
|
108 |
+
segment_header = "СЕГМЕНТ"
|
109 |
+
key_concepts_header = "КЛЮЧЕВЫЕ ПОНЯТИЯ"
|
110 |
+
summary_header = "КРАТКОЕ СОДЕРЖАНИЕ"
|
111 |
+
else:
|
112 |
+
segment_header = "SEGMENT"
|
113 |
+
key_concepts_header = "KEY CONCEPTS"
|
114 |
+
summary_header = "SUMMARY"
|
115 |
+
|
116 |
+
segments = results.get("segments", [])
|
117 |
+
for i, segment in enumerate(segments):
|
118 |
+
topic = segment["topic_name"]
|
119 |
+
segment_num = i + 1
|
120 |
+
output.append(f"\n\n{'='*40}")
|
121 |
+
output.append(f"{segment_header} {segment_num}: {topic}")
|
122 |
+
output.append(f"{'='*40}\n")
|
123 |
+
output.append(f"{key_concepts_header}:")
|
124 |
+
for concept in segment["key_concepts"]:
|
125 |
+
output.append(f"• {concept}")
|
126 |
+
output.append(f"\n{summary_header}:")
|
127 |
+
output.append(segment["summary"])
|
128 |
+
|
129 |
+
return "\n".join(output)
|
130 |
+
|
131 |
+
def format_quiz_for_display(results, language="English"):
|
132 |
+
output = []
|
133 |
+
|
134 |
+
if language == "Uzbek":
|
135 |
+
quiz_questions_header = "TEST SAVOLLARI"
|
136 |
+
elif language == "Russian":
|
137 |
+
quiz_questions_header = "ТЕСТОВЫЕ ВОПРОСЫ"
|
138 |
+
else:
|
139 |
+
quiz_questions_header = "QUIZ QUESTIONS"
|
140 |
+
|
141 |
+
output.append(f"{'='*40}")
|
142 |
+
output.append(f"{quiz_questions_header}")
|
143 |
+
output.append(f"{'='*40}\n")
|
144 |
+
|
145 |
+
quiz_questions = results.get("quiz_questions", [])
|
146 |
+
for i, q in enumerate(quiz_questions):
|
147 |
+
output.append(f"\n{i+1}. {q['question']}")
|
148 |
+
for j, option in enumerate(q['options']):
|
149 |
+
letter = chr(97 + j).upper()
|
150 |
+
correct_marker = " ✓" if option["correct"] else ""
|
151 |
+
output.append(f" {letter}. {option['text']}{correct_marker}")
|
152 |
+
|
153 |
+
return "\n".join(output)
|
154 |
+
|
155 |
+
def analyze_document(text, gemini_api_key, language, content_type="summary"):
|
156 |
+
try:
|
157 |
+
start_time = time.time()
|
158 |
+
text_parts = split_text_by_tokens(text)
|
159 |
+
|
160 |
+
input_tokens = 0
|
161 |
+
output_tokens = 0
|
162 |
+
|
163 |
+
if content_type == "summary":
|
164 |
+
all_results = {"segments": []}
|
165 |
+
segment_counter = 1
|
166 |
+
|
167 |
+
for part in text_parts:
|
168 |
+
actual_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=part)
|
169 |
+
prompt_tokens = len(tokenizer.encode(actual_prompt))
|
170 |
+
input_tokens += prompt_tokens
|
171 |
+
|
172 |
+
analysis = generate_with_gemini(part, gemini_api_key, language, "summary")
|
173 |
+
|
174 |
+
if "segments" in analysis:
|
175 |
+
for segment in analysis["segments"]:
|
176 |
+
segment["segment_number"] = segment_counter
|
177 |
+
all_results["segments"].append(segment)
|
178 |
+
segment_counter += 1
|
179 |
+
|
180 |
+
formatted_output = format_summary_for_display(all_results, language)
|
181 |
+
|
182 |
+
else: # Quiz generation
|
183 |
+
all_results = {"quiz_questions": []}
|
184 |
+
|
185 |
+
for part in text_parts:
|
186 |
+
actual_prompt = QUIZ_PROMPT_TEMPLATE.format(text=part)
|
187 |
+
prompt_tokens = len(tokenizer.encode(actual_prompt))
|
188 |
+
input_tokens += prompt_tokens
|
189 |
+
|
190 |
+
analysis = generate_with_gemini(part, gemini_api_key, language, "quiz")
|
191 |
+
|
192 |
+
if "quiz_questions" in analysis:
|
193 |
+
remaining_slots = 10 - len(all_results["quiz_questions"])
|
194 |
+
if remaining_slots > 0:
|
195 |
+
questions_to_add = analysis["quiz_questions"][:remaining_slots]
|
196 |
+
all_results["quiz_questions"].extend(questions_to_add)
|
197 |
+
|
198 |
+
formatted_output = format_quiz_for_display(all_results, language)
|
199 |
+
|
200 |
+
end_time = time.time()
|
201 |
+
total_time = end_time - start_time
|
202 |
+
|
203 |
+
output_tokens = len(tokenizer.encode(formatted_output))
|
204 |
+
token_info = f"Input tokens: {input_tokens}\nOutput tokens: {output_tokens}\nTotal tokens: {input_tokens + output_tokens}\n"
|
205 |
+
formatted_text = f"Total Processing time: {total_time:.2f}s\n{token_info}\n" + formatted_output
|
206 |
+
|
207 |
+
json_path = tempfile.mktemp(suffix='.json')
|
208 |
+
with open(json_path, 'w', encoding='utf-8') as json_file:
|
209 |
+
json.dump(all_results, json_file, indent=2)
|
210 |
+
|
211 |
+
txt_path = tempfile.mktemp(suffix='.txt')
|
212 |
+
with open(txt_path, 'w', encoding='utf-8') as txt_file:
|
213 |
+
txt_file.write(formatted_text)
|
214 |
+
|
215 |
+
return formatted_text, json_path, txt_path
|
216 |
+
except Exception as e:
|
217 |
+
error_message = f"Error processing document: {str(e)}"
|
218 |
+
return error_message, None, None
|
src/quiz_processing_1.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import gradio as gr
|
6 |
+
import tempfile
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
from anthropic import Anthropic
|
12 |
+
from huggingface_hub import login
|
13 |
+
|
14 |
+
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
|
15 |
+
OPENAI_MODEL = "gpt-4o"
|
16 |
+
GEMINI_MODEL = "gemini-2.0-flash"
|
17 |
+
|
18 |
+
DEFAULT_TEMPERATURE = 0.7
|
19 |
+
|
20 |
+
TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
|
21 |
+
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"
|
22 |
+
|
23 |
+
class CourseInfo(BaseModel):
|
24 |
+
course_name: str = Field(description="Name of the course")
|
25 |
+
section_name: str = Field(description="Name of the course section")
|
26 |
+
lesson_name: str = Field(description="Name of the lesson")
|
27 |
+
|
28 |
+
class QuizOption(BaseModel):
|
29 |
+
text: str = Field(description="The text of the answer option")
|
30 |
+
correct: bool = Field(description="Whether this option is correct")
|
31 |
+
|
32 |
+
class QuizQuestion(BaseModel):
|
33 |
+
question: str = Field(description="The text of the quiz question")
|
34 |
+
options: List[QuizOption] = Field(description="List of answer options")
|
35 |
+
|
36 |
+
class Segment(BaseModel):
|
37 |
+
segment_number: int = Field(description="The segment number")
|
38 |
+
topic_name: str = Field(description="Unique and specific topic name that clearly differentiates it from other segments")
|
39 |
+
key_concepts: List[str] = Field(description="3-5 key concepts discussed in the segment")
|
40 |
+
summary: str = Field(description="Brief summary of the segment (3-5 sentences)")
|
41 |
+
quiz_questions: List[QuizQuestion] = Field(description="5 quiz questions based on the segment content")
|
42 |
+
|
43 |
+
class TextSegmentAnalysis(BaseModel):
|
44 |
+
course_info: CourseInfo = Field(description="Information about the course")
|
45 |
+
segments: List[Segment] = Field(description="List of text segments with analysis")
|
46 |
+
|
47 |
+
|
48 |
+
hf_token = os.environ.get('HF_TOKEN', None)
|
49 |
+
login(token=hf_token)
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
|
52 |
+
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
|
53 |
+
|
54 |
+
# System prompt
|
55 |
+
system_prompt = """You are an expert educational content analyzer. Your task is to analyze text content,
|
56 |
+
identify distinct segments, and create high-quality educational quiz questions for each segment."""
|
57 |
+
|
58 |
+
def clean_text(text):
|
59 |
+
text = re.sub(r'\[speaker_\d+\]', '', text)
|
60 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
61 |
+
return text
|
62 |
+
|
63 |
+
def split_text_by_tokens(text, max_tokens=8000):
|
64 |
+
text = clean_text(text)
|
65 |
+
tokens = tokenizer.encode(text)
|
66 |
+
|
67 |
+
if len(tokens) <= max_tokens:
|
68 |
+
return [text]
|
69 |
+
|
70 |
+
split_point = len(tokens) // 2
|
71 |
+
|
72 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
73 |
+
|
74 |
+
first_half = []
|
75 |
+
second_half = []
|
76 |
+
|
77 |
+
current_tokens = 0
|
78 |
+
for sentence in sentences:
|
79 |
+
sentence_tokens = len(tokenizer.encode(sentence))
|
80 |
+
|
81 |
+
if current_tokens + sentence_tokens <= split_point:
|
82 |
+
first_half.append(sentence)
|
83 |
+
current_tokens += sentence_tokens
|
84 |
+
else:
|
85 |
+
second_half.append(sentence)
|
86 |
+
|
87 |
+
return [" ".join(first_half), " ".join(second_half)]
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def generate_with_claude(text, api_key, course_name="", section_name="", lesson_name=""):
|
92 |
+
from prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_CLAUDE
|
93 |
+
|
94 |
+
client = Anthropic(api_key=api_key)
|
95 |
+
|
96 |
+
segment_analysis_schema = TextSegmentAnalysis.model_json_schema()
|
97 |
+
|
98 |
+
tools = [
|
99 |
+
{
|
100 |
+
"name": "build_segment_analysis",
|
101 |
+
"description": "Build the text segment analysis with quiz questions",
|
102 |
+
"input_schema": segment_analysis_schema
|
103 |
+
}
|
104 |
+
]
|
105 |
+
|
106 |
+
system_prompt = """You are a helpful assistant specialized in text analysis and educational content creation.
|
107 |
+
You analyze texts to identify distinct segments, create summaries, and generate quiz questions."""
|
108 |
+
|
109 |
+
prompt = prompt = ANALYSIS_PROMPT_TEMPLATE_CLAUDE.format(
|
110 |
+
course_name=course_name,
|
111 |
+
section_name=section_name,
|
112 |
+
lesson_name=lesson_name,
|
113 |
+
text=text
|
114 |
+
)
|
115 |
+
|
116 |
+
try:
|
117 |
+
response = client.messages.create(
|
118 |
+
model=CLAUDE_MODEL,
|
119 |
+
max_tokens=8192,
|
120 |
+
temperature=DEFAULT_TEMPERATURE,
|
121 |
+
system=system_prompt,
|
122 |
+
messages=[
|
123 |
+
{
|
124 |
+
"role": "user",
|
125 |
+
"content": prompt
|
126 |
+
}
|
127 |
+
],
|
128 |
+
tools=tools,
|
129 |
+
tool_choice={"type": "tool", "name": "build_segment_analysis"}
|
130 |
+
)
|
131 |
+
|
132 |
+
# Extract the tool call content
|
133 |
+
if response.content and len(response.content) > 0 and hasattr(response.content[0], 'input'):
|
134 |
+
function_call = response.content[0].input
|
135 |
+
return function_call
|
136 |
+
else:
|
137 |
+
raise Exception("No valid tool call found in the response")
|
138 |
+
except Exception as e:
|
139 |
+
raise Exception(f"Error calling Anthropic API: {str(e)}")
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
def get_llm_by_api_key(api_key):
|
145 |
+
if api_key.startswith("sk-ant-"): # Claude API key format
|
146 |
+
from langchain_anthropic import ChatAnthropic
|
147 |
+
return ChatAnthropic(
|
148 |
+
anthropic_api_key=api_key,
|
149 |
+
model_name=CLAUDE_MODEL,
|
150 |
+
temperature=DEFAULT_TEMPERATURE,
|
151 |
+
max_retries=3
|
152 |
+
)
|
153 |
+
elif api_key.startswith("sk-"): # OpenAI API key format
|
154 |
+
from langchain_openai import ChatOpenAI
|
155 |
+
return ChatOpenAI(
|
156 |
+
openai_api_key=api_key,
|
157 |
+
model_name=OPENAI_MODEL,
|
158 |
+
temperature=DEFAULT_TEMPERATURE,
|
159 |
+
max_retries=3
|
160 |
+
)
|
161 |
+
else: # Default to Gemini
|
162 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
163 |
+
os.environ["GOOGLE_API_KEY"] = api_key
|
164 |
+
return ChatGoogleGenerativeAI(
|
165 |
+
model=GEMINI_MODEL,
|
166 |
+
temperature=DEFAULT_TEMPERATURE,
|
167 |
+
max_retries=3
|
168 |
+
)
|
169 |
+
|
170 |
+
def segment_and_analyze_text(text: str, api_key: str, course_name="", section_name="", lesson_name="") -> Dict[str, Any]:
|
171 |
+
from prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_GEMINI
|
172 |
+
if api_key.startswith("sk-ant-"):
|
173 |
+
return generate_with_claude(text, api_key, course_name, section_name, lesson_name)
|
174 |
+
|
175 |
+
# For other models, use LangChain
|
176 |
+
llm = get_llm_by_api_key(api_key)
|
177 |
+
|
178 |
+
prompt = ANALYSIS_PROMPT_TEMPLATE_GEMINI.format(
|
179 |
+
course_name=course_name,
|
180 |
+
section_name=section_name,
|
181 |
+
lesson_name=lesson_name,
|
182 |
+
text=text
|
183 |
+
)
|
184 |
+
|
185 |
+
try:
|
186 |
+
messages = [
|
187 |
+
{"role": "system", "content": system_prompt},
|
188 |
+
{"role": "user", "content": prompt}
|
189 |
+
]
|
190 |
+
|
191 |
+
response = llm.invoke(messages)
|
192 |
+
|
193 |
+
try:
|
194 |
+
content = response.content
|
195 |
+
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
|
196 |
+
|
197 |
+
if json_match:
|
198 |
+
json_str = json_match.group(1)
|
199 |
+
else:
|
200 |
+
json_match = re.search(r'(\{[\s\S]*\})', content)
|
201 |
+
if json_match:
|
202 |
+
json_str = json_match.group(1)
|
203 |
+
else:
|
204 |
+
json_str = content
|
205 |
+
|
206 |
+
# Parse the JSON
|
207 |
+
function_call = json.loads(json_str)
|
208 |
+
return function_call
|
209 |
+
except json.JSONDecodeError:
|
210 |
+
raise Exception("Could not parse JSON from LLM response")
|
211 |
+
except Exception as e:
|
212 |
+
raise Exception(f"Error calling API: {str(e)}")
|
213 |
+
|
214 |
+
def format_quiz_for_display(results):
|
215 |
+
output = []
|
216 |
+
|
217 |
+
if "course_info" in results:
|
218 |
+
course_info = results["course_info"]
|
219 |
+
output.append(f"{'='*40}")
|
220 |
+
output.append(f"COURSE: {course_info.get('course_name', 'N/A')}")
|
221 |
+
output.append(f"SECTION: {course_info.get('section_name', 'N/A')}")
|
222 |
+
output.append(f"LESSON: {course_info.get('lesson_name', 'N/A')}")
|
223 |
+
output.append(f"{'='*40}\n")
|
224 |
+
|
225 |
+
segments = results.get("segments", [])
|
226 |
+
for i, segment in enumerate(segments):
|
227 |
+
topic = segment["topic_name"]
|
228 |
+
segment_num = i + 1
|
229 |
+
output.append(f"\n\n{'='*40}")
|
230 |
+
output.append(f"SEGMENT {segment_num}: {topic}")
|
231 |
+
output.append(f"{'='*40}\n")
|
232 |
+
output.append("KEY CONCEPTS:")
|
233 |
+
for concept in segment["key_concepts"]:
|
234 |
+
output.append(f"• {concept}")
|
235 |
+
output.append("\nSUMMARY:")
|
236 |
+
output.append(segment["summary"])
|
237 |
+
output.append("\nQUIZ QUESTIONS:")
|
238 |
+
for i, q in enumerate(segment["quiz_questions"]):
|
239 |
+
output.append(f"\n{i+1}. {q['question']}")
|
240 |
+
for j, option in enumerate(q['options']):
|
241 |
+
letter = chr(97 + j).upper()
|
242 |
+
correct_marker = " ✓" if option["correct"] else ""
|
243 |
+
output.append(f" {letter}. {option['text']}{correct_marker}")
|
244 |
+
return "\n".join(output)
|
245 |
+
|
246 |
+
def analyze_document(text, api_key, course_name, section_name, lesson_name):
|
247 |
+
try:
|
248 |
+
start_time = time.time()
|
249 |
+
text_parts = split_text_by_tokens(text)
|
250 |
+
|
251 |
+
all_results = {
|
252 |
+
"course_info": {
|
253 |
+
"course_name": course_name,
|
254 |
+
"section_name": section_name,
|
255 |
+
"lesson_name": lesson_name
|
256 |
+
},
|
257 |
+
"segments": []
|
258 |
+
}
|
259 |
+
segment_counter = 1
|
260 |
+
|
261 |
+
# Process each part of the text
|
262 |
+
for part in text_parts:
|
263 |
+
analysis = segment_and_analyze_text(
|
264 |
+
part,
|
265 |
+
api_key,
|
266 |
+
course_name=course_name,
|
267 |
+
section_name=section_name,
|
268 |
+
lesson_name=lesson_name
|
269 |
+
)
|
270 |
+
|
271 |
+
if "segments" in analysis:
|
272 |
+
for segment in analysis["segments"]:
|
273 |
+
segment["segment_number"] = segment_counter
|
274 |
+
all_results["segments"].append(segment)
|
275 |
+
segment_counter += 1
|
276 |
+
|
277 |
+
end_time = time.time()
|
278 |
+
total_time = end_time - start_time
|
279 |
+
print(f"Total quiz processing time: {total_time}s")
|
280 |
+
|
281 |
+
# Format the results for display
|
282 |
+
formatted_text = format_quiz_for_display(all_results)
|
283 |
+
# formatted_text = f"Total processing time: {total_time:.2f} seconds\n\n" + formatted_text
|
284 |
+
|
285 |
+
# Create temporary files for JSON and text output
|
286 |
+
json_path = tempfile.mktemp(suffix='.json')
|
287 |
+
with open(json_path, 'w', encoding='utf-8') as json_file:
|
288 |
+
json.dump(all_results, json_file, indent=2)
|
289 |
+
|
290 |
+
txt_path = tempfile.mktemp(suffix='.txt')
|
291 |
+
with open(txt_path, 'w', encoding='utf-8') as txt_file:
|
292 |
+
txt_file.write(formatted_text)
|
293 |
+
|
294 |
+
return formatted_text, json_path, txt_path
|
295 |
+
except Exception as e:
|
296 |
+
error_message = f"Error processing document: {str(e)}"
|
297 |
+
return error_message, None, None
|
src/video_processing.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import uuid
|
4 |
+
import subprocess
|
5 |
+
import time
|
6 |
+
|
7 |
+
def extract_audio_from_video(video_path, output_format="mp3"):
|
8 |
+
if not video_path:
|
9 |
+
return None
|
10 |
+
|
11 |
+
output_path = f"audio_{uuid.uuid4().hex[:6]}.{output_format}"
|
12 |
+
|
13 |
+
try:
|
14 |
+
cmd = [
|
15 |
+
"ffmpeg",
|
16 |
+
"-i", video_path,
|
17 |
+
"-vn",
|
18 |
+
"-c:a", "libmp3lame" if output_format == "mp3" else output_format,
|
19 |
+
"-q:a", "9",
|
20 |
+
"-ac", "1",
|
21 |
+
"-ar", "12000",
|
22 |
+
"-y", output_path
|
23 |
+
]
|
24 |
+
|
25 |
+
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
26 |
+
|
27 |
+
if os.path.exists(output_path):
|
28 |
+
return output_path
|
29 |
+
else:
|
30 |
+
raise Exception("Audio extraction failed")
|
31 |
+
except Exception as e:
|
32 |
+
raise Exception(f"Error extracting audio: {str(e)}")
|
33 |
+
|
34 |
+
def transcribe_audio(audio_path, api_key, model_id="scribe_v1"):
|
35 |
+
if not api_key:
|
36 |
+
raise Exception("API key required")
|
37 |
+
|
38 |
+
url = "https://api.elevenlabs.io/v1/speech-to-text"
|
39 |
+
headers = {"xi-api-key": api_key}
|
40 |
+
|
41 |
+
try:
|
42 |
+
with open(audio_path, "rb") as file:
|
43 |
+
response = requests.post(
|
44 |
+
url,
|
45 |
+
headers=headers,
|
46 |
+
files={"file": file, "model_id": (None, model_id)},
|
47 |
+
timeout=120
|
48 |
+
)
|
49 |
+
|
50 |
+
if response.status_code == 200:
|
51 |
+
result = response.json()
|
52 |
+
transcript_text = result.get("text", "")
|
53 |
+
|
54 |
+
# Save transcript to file
|
55 |
+
transcript_file = f"transcript_{uuid.uuid4().hex[:6]}.txt"
|
56 |
+
with open(transcript_file, "w", encoding="utf-8") as f:
|
57 |
+
f.write(transcript_text)
|
58 |
+
|
59 |
+
return transcript_text, transcript_file, "Transcription completed successfully"
|
60 |
+
else:
|
61 |
+
raise Exception(f"API error: {response.status_code}")
|
62 |
+
except Exception as e:
|
63 |
+
raise Exception(f"Transcription failed: {str(e)}")
|
64 |
+
|
65 |
+
def process_video_file(video_path, audio_format, elevenlabs_api_key, model_id, gemini_api_key, language, content_type):
|
66 |
+
try:
|
67 |
+
print("Starting video processing...")
|
68 |
+
start = time.time()
|
69 |
+
|
70 |
+
audio_path = extract_audio_from_video(video_path, audio_format)
|
71 |
+
print(f"Audio extracted in {time.time() - start:.2f}s. Transcribing...")
|
72 |
+
|
73 |
+
transcription, transcript_path, transcription_status = transcribe_audio(
|
74 |
+
audio_path,
|
75 |
+
elevenlabs_api_key,
|
76 |
+
model_id
|
77 |
+
)
|
78 |
+
|
79 |
+
if not transcription:
|
80 |
+
return audio_path, "Audio extracted, but transcription failed", None, transcription_status, None, None, None
|
81 |
+
|
82 |
+
print(f"Transcription completed in {time.time() - start:.2f}s. Analyzing content...")
|
83 |
+
|
84 |
+
# Generate summary or quiz from transcription
|
85 |
+
formatted_output, json_path, txt_path = analyze_document(
|
86 |
+
transcription,
|
87 |
+
gemini_api_key,
|
88 |
+
language,
|
89 |
+
content_type
|
90 |
+
)
|
91 |
+
|
92 |
+
print(f"Total processing time: {time.time() - start:.2f}s")
|
93 |
+
return audio_path, "Processing completed successfully", transcript_path, transcription_status, formatted_output, txt_path, json_path
|
94 |
+
except Exception as e:
|
95 |
+
error_message = f"Error processing video: {str(e)}"
|
96 |
+
return None, error_message, None, error_message, error_message, None, None
|