File size: 6,457 Bytes
5465a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from typing import Dict
import matplotlib.pyplot as plt
import seaborn as sns
import os

def evaluate_stability(df: pd.DataFrame, prompt_col: str, answer_col: str,
                       model_name: str = 'paraphrase-MiniLM-L6-v2',
                       progress=None) -> Dict:
    if progress:
        progress(0, desc="Loading sentence transformer model...")
    
    model = SentenceTransformer(model_name)
    
    prompts = df[prompt_col].tolist()
    outputs = df[answer_col].tolist()
    
    if progress:
        progress(0.3, desc="Encoding prompts...")
    prompt_embeddings = model.encode(prompts)
    
    if progress:
        progress(0.6, desc="Encoding outputs...")
    output_embeddings = model.encode(outputs)
    
    if progress:
        progress(0.9, desc="Computing similarities...")
    similarities = cosine_similarity(prompt_embeddings, output_embeddings)
    stability_coefficients = np.diag(similarities)
    
    if progress:
        progress(1.0, desc="Done!")
    return {
        'stability_score': np.mean(stability_coefficients) * 100,  
        'stability_std': np.std(stability_coefficients) * 100,
        'individual_similarities': stability_coefficients
    }

def evaluate_combined_score(creativity_df: pd.DataFrame, stability_results: Dict, 
                           model_name: str) -> Dict:
    creative_score = creativity_df["Среднее"].mean()
    stability_score = stability_results['stability_score']
    combined_score = (creative_score + stability_score) / 2
    
    timestamp = pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')
    
    return {
        'model': model_name,
        'creativity_score': creative_score,
        'stability_score': stability_score,
        'combined_score': combined_score,
        'evaluation_timestamp': timestamp,
        'creative_details': {
            'creativity': creativity_df["Креативность"].mean(),
            'diversity': creativity_df["Разнообразие"].mean(),
            'relevance': creativity_df["Релевантность"].mean(),
        },
        'stability_details': stability_results
    }

def create_radar_chart(all_results):
    os.makedirs('results', exist_ok=True)
    
    # Extract data for radar chart
    categories = ['Креативность', 'Разнообразие', 'Релевантность', 'Стабильность']
    models = list(all_results.keys())
    
    # Create figure and polar axis
    fig, ax = plt.subplots(figsize=(10, 8), subplot_kw=dict(polar=True))
    
    # Number of variables
    N = len(categories)
    
    # Angle of each axis
    angles = [n / float(N) * 2 * np.pi for n in range(N)]
    angles += angles[:1]  # Close the polygon
    
    # Set the labels
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(categories)
    
    # Draw the polygons for each model
    for i, model in enumerate(models):
        values = [
            all_results[model]['creative_details']['creativity'],
            all_results[model]['creative_details']['diversity'],
            all_results[model]['creative_details']['relevance'],
            all_results[model]['stability_score']
        ]
        
        # Add the first value again to close the polygon
        values += values[:1]
        
        # Plot values
        ax.plot(angles, values, linewidth=2, linestyle='solid', label=model)
        ax.fill(angles, values, alpha=0.1)
    
    # Add legend
    plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
    
    # Add title
    plt.title('Model Performance Comparison', size=15, pad=20)
    
    # Save the chart
    radar_chart_path = 'results/radar_chart.png'
    plt.savefig(radar_chart_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    return radar_chart_path

def create_bar_chart(all_results):
    # Extract data for bar chart
    models = list(all_results.keys())
    creative_scores = [all_results[model]['creativity_score'] for model in models]
    stability_scores = [all_results[model]['stability_score'] for model in models]
    combined_scores = [all_results[model]['combined_score'] for model in models]
    
    # Create figure
    fig, ax = plt.subplots(figsize=(12, 8))
    
    # Set bar width
    bar_width = 0.25
    
    # Set bar positions
    r1 = np.arange(len(models))
    r2 = [x + bar_width for x in r1]
    r3 = [x + bar_width for x in r2]
    
    # Create bars
    ax.bar(r1, creative_scores, width=bar_width, label='Креативность', color='skyblue')
    ax.bar(r2, stability_scores, width=bar_width, label='Стабильность', color='orange')
    ax.bar(r3, combined_scores, width=bar_width, label='Общий балл', color='green')
    
    # Add labels and title
    ax.set_xlabel('Модели')
    ax.set_ylabel('Оценка')
    ax.set_title('Сравнение моделей по креативности и стабильности')
    ax.set_xticks([r + bar_width for r in range(len(models))])
    ax.set_xticklabels(models)
    
    # Add legend
    ax.legend()
    
    # Save the chart
    bar_chart_path = 'results/bar_chart.png'
    plt.savefig(bar_chart_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    return bar_chart_path

def get_leaderboard_data():
    benchmark_file = 'results/benchmark_results.csv'
    if not os.path.exists(benchmark_file):
        return pd.DataFrame(columns=[
            "Model", "Креативность", "Разнообразие", "Релевантность", "Стабильность", "Общий балл"
        ])
    
    try:
        df = pd.read_csv(benchmark_file)
        # Format the dataframe for display
        formatted_df = pd.DataFrame({
            "Model": df['model'],
            "Креативность": df['creativity_score'].round(2),
            "Стабильность": df['stability_score'].round(2),
            "Общий балл": df['combined_score'].round(2)
        })
        return formatted_df.sort_values(by="Общий балл", ascending=False)
    except Exception as e:
        print(f"Error loading leaderboard data: {str(e)}")
        return pd.DataFrame(columns=[
            "Model", "Креативность", "Разнообразие", "Релевантность", "Стабильность", "Общий балл"
        ])