Spaces:
Running
Running
Create evaluate_stability.py
Browse files- evaluate_stability.py +175 -0
evaluate_stability.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from typing import Dict
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import os
|
9 |
+
|
10 |
+
def evaluate_stability(df: pd.DataFrame, prompt_col: str, answer_col: str,
|
11 |
+
model_name: str = 'paraphrase-MiniLM-L6-v2',
|
12 |
+
progress=None) -> Dict:
|
13 |
+
if progress:
|
14 |
+
progress(0, desc="Loading sentence transformer model...")
|
15 |
+
|
16 |
+
model = SentenceTransformer(model_name)
|
17 |
+
|
18 |
+
prompts = df[prompt_col].tolist()
|
19 |
+
outputs = df[answer_col].tolist()
|
20 |
+
|
21 |
+
if progress:
|
22 |
+
progress(0.3, desc="Encoding prompts...")
|
23 |
+
prompt_embeddings = model.encode(prompts)
|
24 |
+
|
25 |
+
if progress:
|
26 |
+
progress(0.6, desc="Encoding outputs...")
|
27 |
+
output_embeddings = model.encode(outputs)
|
28 |
+
|
29 |
+
if progress:
|
30 |
+
progress(0.9, desc="Computing similarities...")
|
31 |
+
similarities = cosine_similarity(prompt_embeddings, output_embeddings)
|
32 |
+
stability_coefficients = np.diag(similarities)
|
33 |
+
|
34 |
+
if progress:
|
35 |
+
progress(1.0, desc="Done!")
|
36 |
+
return {
|
37 |
+
'stability_score': np.mean(stability_coefficients) * 100,
|
38 |
+
'stability_std': np.std(stability_coefficients) * 100,
|
39 |
+
'individual_similarities': stability_coefficients
|
40 |
+
}
|
41 |
+
|
42 |
+
def evaluate_combined_score(creativity_df: pd.DataFrame, stability_results: Dict,
|
43 |
+
model_name: str) -> Dict:
|
44 |
+
creative_score = creativity_df["Среднее"].mean()
|
45 |
+
stability_score = stability_results['stability_score']
|
46 |
+
combined_score = (creative_score + stability_score) / 2
|
47 |
+
|
48 |
+
timestamp = pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')
|
49 |
+
|
50 |
+
return {
|
51 |
+
'model': model_name,
|
52 |
+
'creativity_score': creative_score,
|
53 |
+
'stability_score': stability_score,
|
54 |
+
'combined_score': combined_score,
|
55 |
+
'evaluation_timestamp': timestamp,
|
56 |
+
'creative_details': {
|
57 |
+
'creativity': creativity_df["Креативность"].mean(),
|
58 |
+
'diversity': creativity_df["Разнообразие"].mean(),
|
59 |
+
'relevance': creativity_df["Релевантность"].mean(),
|
60 |
+
},
|
61 |
+
'stability_details': stability_results
|
62 |
+
}
|
63 |
+
|
64 |
+
def create_radar_chart(all_results):
|
65 |
+
os.makedirs('results', exist_ok=True)
|
66 |
+
|
67 |
+
# Extract data for radar chart
|
68 |
+
categories = ['Креативность', 'Разнообразие', 'Релевантность', 'Стабильность']
|
69 |
+
models = list(all_results.keys())
|
70 |
+
|
71 |
+
# Create figure and polar axis
|
72 |
+
fig, ax = plt.subplots(figsize=(10, 8), subplot_kw=dict(polar=True))
|
73 |
+
|
74 |
+
# Number of variables
|
75 |
+
N = len(categories)
|
76 |
+
|
77 |
+
# Angle of each axis
|
78 |
+
angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
79 |
+
angles += angles[:1] # Close the polygon
|
80 |
+
|
81 |
+
# Set the labels
|
82 |
+
ax.set_xticks(angles[:-1])
|
83 |
+
ax.set_xticklabels(categories)
|
84 |
+
|
85 |
+
# Draw the polygons for each model
|
86 |
+
for i, model in enumerate(models):
|
87 |
+
values = [
|
88 |
+
all_results[model]['creative_details']['creativity'],
|
89 |
+
all_results[model]['creative_details']['diversity'],
|
90 |
+
all_results[model]['creative_details']['relevance'],
|
91 |
+
all_results[model]['stability_score']
|
92 |
+
]
|
93 |
+
|
94 |
+
# Add the first value again to close the polygon
|
95 |
+
values += values[:1]
|
96 |
+
|
97 |
+
# Plot values
|
98 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model)
|
99 |
+
ax.fill(angles, values, alpha=0.1)
|
100 |
+
|
101 |
+
# Add legend
|
102 |
+
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
103 |
+
|
104 |
+
# Add title
|
105 |
+
plt.title('Model Performance Comparison', size=15, pad=20)
|
106 |
+
|
107 |
+
# Save the chart
|
108 |
+
radar_chart_path = 'results/radar_chart.png'
|
109 |
+
plt.savefig(radar_chart_path, dpi=300, bbox_inches='tight')
|
110 |
+
plt.close()
|
111 |
+
|
112 |
+
return radar_chart_path
|
113 |
+
|
114 |
+
def create_bar_chart(all_results):
|
115 |
+
# Extract data for bar chart
|
116 |
+
models = list(all_results.keys())
|
117 |
+
creative_scores = [all_results[model]['creativity_score'] for model in models]
|
118 |
+
stability_scores = [all_results[model]['stability_score'] for model in models]
|
119 |
+
combined_scores = [all_results[model]['combined_score'] for model in models]
|
120 |
+
|
121 |
+
# Create figure
|
122 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
123 |
+
|
124 |
+
# Set bar width
|
125 |
+
bar_width = 0.25
|
126 |
+
|
127 |
+
# Set bar positions
|
128 |
+
r1 = np.arange(len(models))
|
129 |
+
r2 = [x + bar_width for x in r1]
|
130 |
+
r3 = [x + bar_width for x in r2]
|
131 |
+
|
132 |
+
# Create bars
|
133 |
+
ax.bar(r1, creative_scores, width=bar_width, label='Креативность', color='skyblue')
|
134 |
+
ax.bar(r2, stability_scores, width=bar_width, label='Стабильность', color='orange')
|
135 |
+
ax.bar(r3, combined_scores, width=bar_width, label='Общий балл', color='green')
|
136 |
+
|
137 |
+
# Add labels and title
|
138 |
+
ax.set_xlabel('Модели')
|
139 |
+
ax.set_ylabel('Оценка')
|
140 |
+
ax.set_title('Сра��нение моделей по креативности и стабильности')
|
141 |
+
ax.set_xticks([r + bar_width for r in range(len(models))])
|
142 |
+
ax.set_xticklabels(models)
|
143 |
+
|
144 |
+
# Add legend
|
145 |
+
ax.legend()
|
146 |
+
|
147 |
+
# Save the chart
|
148 |
+
bar_chart_path = 'results/bar_chart.png'
|
149 |
+
plt.savefig(bar_chart_path, dpi=300, bbox_inches='tight')
|
150 |
+
plt.close()
|
151 |
+
|
152 |
+
return bar_chart_path
|
153 |
+
|
154 |
+
def get_leaderboard_data():
|
155 |
+
benchmark_file = 'results/benchmark_results.csv'
|
156 |
+
if not os.path.exists(benchmark_file):
|
157 |
+
return pd.DataFrame(columns=[
|
158 |
+
"Model", "Креативность", "Разнообразие", "Релевантность", "Стабильность", "Общий балл"
|
159 |
+
])
|
160 |
+
|
161 |
+
try:
|
162 |
+
df = pd.read_csv(benchmark_file)
|
163 |
+
# Format the dataframe for display
|
164 |
+
formatted_df = pd.DataFrame({
|
165 |
+
"Model": df['model'],
|
166 |
+
"Креативность": df['creativity_score'].round(2),
|
167 |
+
"Стабильность": df['stability_score'].round(2),
|
168 |
+
"Общий балл": df['combined_score'].round(2)
|
169 |
+
})
|
170 |
+
return formatted_df.sort_values(by="Общий балл", ascending=False)
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error loading leaderboard data: {str(e)}")
|
173 |
+
return pd.DataFrame(columns=[
|
174 |
+
"Model", "Креативность", "Разнообразие", "Релевантность", "Стабильность", "Общий балл"
|
175 |
+
])
|