BAS_Website_AI / app.py
Mr-Geo's picture
Update app.py
9370c85 verified
raw
history blame
17 kB
import os
import zipfile
import json
from dotenv import load_dotenv
from groq import Groq
import chromadb
from chromadb.config import Settings
import torch
from sentence_transformers import CrossEncoder
import gradio as gr
from datetime import datetime
from huggingface_hub import hf_hub_download, HfApi, CommitOperationAdd
from pathlib import Path
import tempfile
# Load environment variables and initialize clients
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get the token from environment variables
hf_token = os.getenv("HF_TOKEN")
def load_chroma_db():
print("Using ChromaDB from Hugging Face dataset...")
# Download the zipped database from Hugging Face
zip_path = hf_hub_download(
repo_id="Mr-Geo/chroma_db",
filename="chroma_db.zip",
repo_type="dataset",
use_auth_token=hf_token
)
print(f"Downloaded database zip to: {zip_path}")
# Extract to a temporary directory
extract_dir = "/tmp" # This will create /tmp/chroma_db
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
print("Zip contents:", zip_ref.namelist())
zip_ref.extractall(extract_dir)
db_path = os.path.join(extract_dir, "chroma_db")
print(f"Using ChromaDB path: {db_path}")
print(f"Directory contents: {os.listdir(db_path)}")
db = chromadb.PersistentClient(
path=db_path,
settings=Settings(
anonymized_telemetry=False,
allow_reset=True,
is_persistent=True
)
)
# Debug: Print collections
collections = db.list_collections()
print("Available collections:", collections)
return db
# Check if running locally
if os.path.exists("./chroma_db/chroma.sqlite3"):
print("Using local ChromaDB setup...")
db = chromadb.PersistentClient(
path="./chroma_db",
settings=Settings(
anonymized_telemetry=False,
allow_reset=True,
is_persistent=True
)
)
else:
# Load from Hugging Face dataset
db = load_chroma_db()
def initialize_system():
"""Initialize the system components"""
# Use the same ChromaDB client that was loaded from HF
chroma_client = db # Use the global db instance we created
# Initialize the embedding function
embedding_function = chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="sentence-transformers/all-mpnet-base-v2",
device=DEVICE
)
# Get the collection
print("Getting collection...")
collection = chroma_client.get_collection(name="website_content", embedding_function=embedding_function)
print(f"Found {collection.count()} documents in collection")
# Initialize the reranker
print("\nInitialising Cross-Encoder...")
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=DEVICE)
return chroma_client, collection, reranker
def get_context(message):
results = collection.query(
query_texts=[message],
n_results=500,
include=["metadatas", "documents", "distances"]
)
print(f"\n=== Search Results ===")
print(f"Initial ChromaDB results found: {len(results['documents'][0])}")
# Rerank all results
rerank_pairs = [(message, doc) for doc in results['documents'][0]]
rerank_scores = reranker.predict(rerank_pairs)
# Create list of results with scores
all_results = []
url_chunks = {} # Group chunks by URL
# Group chunks by URL and store their scores
for score, doc, metadata in zip(rerank_scores, results['documents'][0], results['metadatas'][0]):
url = metadata['url']
if url not in url_chunks:
url_chunks[url] = []
url_chunks[url].append({'text': doc, 'metadata': metadata, 'score': score})
# For each URL, select the best chunks while maintaining diversity
for url, chunks in url_chunks.items():
# Sort chunks for this URL by score
chunks.sort(key=lambda x: x['score'], reverse=True)
# Take up to 5 chunks per URL, but only if their scores are good
selected_chunks = []
for chunk in chunks[:5]: # 5 chunks per URL
# Only include if score is decent
if chunk['score'] > -10: # Increased threshold to ensure higher relevance
selected_chunks.append(chunk)
# Add selected chunks to final results
all_results.extend(selected_chunks)
# Sort all results by score for final ranking
all_results.sort(key=lambda x: x['score'], reverse=True)
# Take only top 20 results maximum
all_results = all_results[:20]
print(f"\nFinal results after reranking and filtering: {len(all_results)}")
if all_results:
print("\nTop Similarity Scores and URLs:")
for i, result in enumerate(all_results[:20], 1): # Show only top 20 in logs
print(f"{i}. Score: {result['score']:.4f} - URL: {result['metadata']['url']}")
print("=" * 50)
# Build context from filtered results
context = "\nRelevant Information:\n"
total_chars = 0
max_chars = 30000 # To ensure we don't exceed token limits
for result in all_results:
chunk_text = f"\nSource: {result['metadata']['url']}\n{result['text']}\n"
if total_chars + len(chunk_text) > max_chars:
break
context += chunk_text
total_chars += len(chunk_text)
print(f"\nFinal context length: {total_chars} characters")
return context
def log_conversation(timestamp, user_message, assistant_response, model_name, context, error=None):
"""Log conversation details to JSON file - local directory or HuggingFace Dataset repository"""
# Create a log entry
log_entry = {
"timestamp": timestamp,
"model_name": model_name,
"user_message": user_message,
"assistant_response": assistant_response,
"context": context,
"error": str(error) if error else None
}
# Check if running on Hugging Face Spaces
is_hf_space = os.getenv('SPACE_ID') is not None
current_date = datetime.now().strftime("%Y-%m-%d")
if is_hf_space:
try:
# Initialize Hugging Face API
api = HfApi(token=hf_token)
filename = f"conversation_logs/daily_{current_date}.json"
try:
# Try to download existing file
existing_file = api.hf_hub_download(
repo_id="Mr-Geo/bas_chat_logs",
filename=filename,
repo_type="dataset",
token=hf_token
)
# Load existing logs
with open(existing_file, 'r', encoding='utf-8') as f:
logs = json.load(f)
except Exception:
# File doesn't exist yet, start with empty list
logs = []
# Append new log entry
logs.append(log_entry)
# Create temporary file with updated logs
with tempfile.NamedTemporaryFile(mode='w', encoding='utf-8', delete=False, suffix='.json') as temp_file:
json.dump(logs, temp_file, ensure_ascii=False, indent=2)
temp_file_path = temp_file.name
# Push to the dataset repository
operations = [
CommitOperationAdd(
path_in_repo=filename,
path_or_fileobj=temp_file_path
)
]
api.create_commit(
repo_id="Mr-Geo/bas_chat_logs",
repo_type="dataset",
operations=operations,
commit_message=f"Update conversation logs for {current_date}"
)
# Clean up temporary file
os.unlink(temp_file_path)
except Exception as e:
print(f"\n⚠️ Error logging conversation to HuggingFace: {str(e)}")
else:
# Local environment - save to file
try:
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
log_file = log_dir / f"conversation_log_{current_date}.json"
# Load existing logs if file exists
if log_file.exists():
with open(log_file, 'r', encoding='utf-8') as f:
logs = json.load(f)
else:
logs = []
# Append new log entry
logs.append(log_entry)
# Write updated logs
with open(log_file, 'w', encoding='utf-8') as f:
json.dump(logs, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"\n⚠️ Error logging conversation locally: {str(e)}")
def chat_response(message, history, model_name):
"""Chat response function for Gradio interface"""
try:
# Get context and timestamp
context = get_context(message)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Build messages list
messages = [{
"role": "system",
"content": f"""You are an AI assistant for the British Antarctic Survey (BAS). Your responses should be based ONLY on the context provided below.
IMPORTANT INSTRUCTIONS:
1. ALWAYS thoroughly check the provided context before saying you don't have information
2. If you find ANY relevant information in the context, use it - even if it's not complete
3. If you find time-sensitive information in the context, share it - it's current as of when the context was retrieved
4. When citing sources, put them on a new line after the relevant information like this:
Here is some information about BAS.
Source: https://www.bas.ac.uk/example
5. Do not say things like:
- "I don't have access to real-time information"
- "I cannot browse the internet"
Instead, share what IS in the context, and only say "I don't have enough information" if you truly find nothing relevant to the users question.
6. Keep responses:
- With emojis where appropriate
- Without duplicate source citations
- Based strictly on the context below
Current Time: {timestamp}
Context: {context}"""
}]
print("\n\n==========START Contents of the message being sent to the LLM==========\n")
print(messages)
print("\n\n==========END Contents of the message being sent to the LLM==========\n")
# Add history and current message
if history:
for h in history:
messages.append({"role": "user", "content": f"{str(h[0])} at BAS"})
if h[1]: # If there's a response
messages.append({"role": "assistant", "content": str(h[1])})
messages.append({"role": "user", "content": str(message)})
# Get response
response = ""
completion = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.7,
max_tokens=2500,
top_p=0.95,
stream=True
)
print("\n=== LLM Response Start ===")
thinking_process = ""
final_response = ""
is_thinking = False
for chunk in completion:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
print(content, end='', flush=True)
# Check for thinking tags
if "<think>" in content:
is_thinking = True
continue
elif "</think>" in content:
is_thinking = False
# Create collapsible thinking section
if thinking_process:
final_response = f"""<details>
<summary>πŸ€” <u>Click to see 'thinking' process</u></summary>
<div style="font-size: 0.9em;">
<i>πŸ’­{thinking_process}</i>
</div>
<hr style="margin: 0; height: 2px;">
</details>
{final_response}"""
continue
# Append content to appropriate section
if is_thinking:
thinking_process += content
else:
final_response += content
yield final_response
log_conversation(timestamp, message, final_response, model_name, context)
print("\n=== LLM Response End ===\n")
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
print(f"\nERROR: {error_msg}")
log_conversation(datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
message, error_msg, model_name, context, error=e)
yield error_msg
if __name__ == "__main__":
try:
print("\n=== Starting Application ===")
Path("logs").mkdir(exist_ok=True)
print("Initialising ChromaDB...")
chroma_client, collection, reranker = initialize_system()
print(f"Found {collection.count()} documents in collection")
print("\nCreating Gradio interface...")
demo = gr.Blocks()
with demo:
gr.Markdown("# πŸŒβ„οΈBritish Antarctic Survey Website Chat Assistant πŸ§ŠπŸ€–")
gr.Markdown("Accesses text data from 11,982 unique BAS URLs (6GB [Vector Database](https://huggingface.co/datasets/Mr-Geo/chroma_db/tree/main/) πŸ“š extracted 02/02/2025) Created with open source technologies: [Gradio](https://gradio.app) for the interface 🎨, [Groq](https://groq.com) for LLM processing ⚑, and [Chroma](https://www.trychroma.com/) as the vector database πŸ’»")
model_selector = gr.Dropdown(
choices=[
"llama-3.1-8b-instant",
"llama-3.3-70b-versatile",
"llama-3.3-70b-specdec",
"mixtral-8x7b-32768",
"deepseek-r1-distill-llama-70b"
],
value="llama-3.1-8b-instant",
label="Select AI Large Language Model πŸ€–",
info="Choose which AI model to use for responses (all models running on [GroqCloud](https://groq.com/groqrack/)"
)
chatbot = gr.Chatbot(height=600)
with gr.Row(equal_height=True):
msg = gr.Textbox(
placeholder="What would you like to know? Or choose an example question...❓",
label="Your question",
show_label=True,
container=True,
scale=20
)
send = gr.Button("Send ⬆️", scale=1, min_width=50)
clear = gr.Button("Clear chat history 🧹 (Click here if any errors are returned)")
gr.Examples(
examples=[
"What research stations does BAS operate in Antarctica? πŸ”οΈ",
"Tell me about the RRS Sir David Attenborough 🚒",
"What kind of science and research does BAS do? πŸ”¬",
"What is BAS doing about climate change? 🌑️",
],
inputs=msg,
)
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, model_name):
if history and history[-1][1] is None:
for response in chat_response(history[-1][0], history[:-1], model_name):
history[-1][1] = response
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, model_selector], chatbot
)
send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, model_selector], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
gr.Markdown("<footer style='text-align: center; margin-top: 5px;'>πŸ€– AI-generated content; while the Chat Assistant strives for accuracy, errors may occur; please thoroughly check critical information πŸ€–<br>⚠️ <strong><u>Disclaimer: This system was not produced by the British Antarctic Survey (BAS) and AI generated output does not reflect the views or opinions of BAS</u></strong> ⚠️ <br>(just a bit of fun :D)</footer>")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
print(f"\nERROR: {str(e)}")
raise