File size: 17,029 Bytes
b9db1f0
5f6acb3
e6f62c0
b9db1f0
 
 
 
 
 
41e54f7
16f9d37
e261a15
e6f62c0
e261a15
41e54f7
b9db1f0
 
 
 
 
41e54f7
396bf0d
 
 
16f9d37
 
5f6acb3
 
 
047977b
5f6acb3
6e0a272
047977b
 
5f6acb3
 
aa756b6
 
5f6acb3
aa756b6
5f6acb3
fb1727d
aa756b6
 
 
fb1727d
 
aa756b6
fb1727d
 
 
 
 
 
71eb119
aa756b6
162eca4
 
71eb119
16f9d37
 
 
 
 
fb1727d
 
 
 
 
 
 
 
16f9d37
 
 
 
b9db1f0
4959f0f
b9db1f0
4959f0f
 
 
 
b9db1f0
 
 
 
 
4959f0f
 
b9db1f0
4959f0f
 
 
 
 
 
b9db1f0
41e54f7
b9db1f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e54f7
e6f62c0
e261a15
e6f62c0
 
 
 
 
 
 
 
 
 
e261a15
 
e6f62c0
 
e261a15
 
 
 
 
e6f62c0
e261a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9370c85
 
 
 
 
 
 
e261a15
 
 
9370c85
e261a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f62c0
3a4341d
b9db1f0
 
e6f62c0
b9db1f0
e6f62c0
b9db1f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e54f7
e6f62c0
41e54f7
b9db1f0
 
 
 
 
 
41e54f7
b9db1f0
 
 
e261a15
b9db1f0
 
 
 
 
 
 
 
3a4341d
b9db1f0
 
3a4341d
b9db1f0
 
 
 
 
3a4341d
 
 
 
b9db1f0
 
3a4341d
 
 
 
 
 
 
 
 
 
 
 
e6f62c0
3a4341d
e261a15
3a4341d
e6f62c0
3a4341d
 
 
 
 
 
 
 
 
 
 
e6f62c0
 
b9db1f0
41e54f7
b9db1f0
 
 
e6f62c0
 
b9db1f0
e6f62c0
41e54f7
b9db1f0
 
 
e6f62c0
 
 
 
b9db1f0
 
 
 
 
 
e6f62c0
b9db1f0
 
 
e6f62c0
e261a15
3a4341d
 
 
e6f62c0
 
3a4341d
 
 
e6f62c0
 
e261a15
3a4341d
b9db1f0
7946efa
e6f62c0
 
 
 
 
 
 
 
 
9370c85
3a4341d
 
 
 
 
 
 
 
 
 
b9db1f0
 
60dc823
b9db1f0
3a4341d
60dc823
3a4341d
60dc823
b9db1f0
 
 
3a4341d
b9db1f0
e6f62c0
 
 
b9db1f0
 
e6f62c0
b9db1f0
409b716
b9db1f0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os
import zipfile
import json
from dotenv import load_dotenv
from groq import Groq
import chromadb
from chromadb.config import Settings
import torch
from sentence_transformers import CrossEncoder
import gradio as gr
from datetime import datetime 
from huggingface_hub import hf_hub_download, HfApi, CommitOperationAdd
from pathlib import Path
import tempfile

# Load environment variables and initialize clients
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Get the token from environment variables
hf_token = os.getenv("HF_TOKEN")

def load_chroma_db():
    print("Using ChromaDB from Hugging Face dataset...")
    
    # Download the zipped database from Hugging Face
    zip_path = hf_hub_download(
        repo_id="Mr-Geo/chroma_db",
        filename="chroma_db.zip",
        repo_type="dataset",
        use_auth_token=hf_token
    )
    print(f"Downloaded database zip to: {zip_path}")
    
    # Extract to a temporary directory
    extract_dir = "/tmp"  # This will create /tmp/chroma_db
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        print("Zip contents:", zip_ref.namelist())
        zip_ref.extractall(extract_dir)
    
    db_path = os.path.join(extract_dir, "chroma_db")
    print(f"Using ChromaDB path: {db_path}")
    print(f"Directory contents: {os.listdir(db_path)}")
    
    db = chromadb.PersistentClient(
        path=db_path,
        settings=Settings(
            anonymized_telemetry=False,
            allow_reset=True,
            is_persistent=True
        )
    )
    
    # Debug: Print collections
    collections = db.list_collections()
    print("Available collections:", collections)
    
    return db

# Check if running locally
if os.path.exists("./chroma_db/chroma.sqlite3"):
    print("Using local ChromaDB setup...")
    db = chromadb.PersistentClient(
        path="./chroma_db",
        settings=Settings(
            anonymized_telemetry=False,
            allow_reset=True,
            is_persistent=True
        )
    )
else:
    # Load from Hugging Face dataset
    db = load_chroma_db()

def initialize_system():
    """Initialize the system components"""
    
    # Use the same ChromaDB client that was loaded from HF
    chroma_client = db  # Use the global db instance we created
    
    # Initialize the embedding function
    embedding_function = chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
        model_name="sentence-transformers/all-mpnet-base-v2",
        device=DEVICE
    )
    
    # Get the collection
    print("Getting collection...")
    collection = chroma_client.get_collection(name="website_content", embedding_function=embedding_function)
    print(f"Found {collection.count()} documents in collection")
    
    # Initialize the reranker
    print("\nInitialising Cross-Encoder...")
    reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=DEVICE)
    
    return chroma_client, collection, reranker

def get_context(message):
    results = collection.query(
        query_texts=[message],
        n_results=500,
        include=["metadatas", "documents", "distances"]
    )
    
    print(f"\n=== Search Results ===")
    print(f"Initial ChromaDB results found: {len(results['documents'][0])}")
    
    # Rerank all results
    rerank_pairs = [(message, doc) for doc in results['documents'][0]]
    rerank_scores = reranker.predict(rerank_pairs)
    
    # Create list of results with scores
    all_results = []
    url_chunks = {}  # Group chunks by URL
    
    # Group chunks by URL and store their scores
    for score, doc, metadata in zip(rerank_scores, results['documents'][0], results['metadatas'][0]):
        url = metadata['url']
        if url not in url_chunks:
            url_chunks[url] = []
        url_chunks[url].append({'text': doc, 'metadata': metadata, 'score': score})
    
    # For each URL, select the best chunks while maintaining diversity
    for url, chunks in url_chunks.items():
        # Sort chunks for this URL by score
        chunks.sort(key=lambda x: x['score'], reverse=True)
        
        # Take up to 5 chunks per URL, but only if their scores are good
        selected_chunks = []
        for chunk in chunks[:5]:  # 5 chunks per URL
            # Only include if score is decent
            if chunk['score'] > -10:  # Increased threshold to ensure higher relevance
                selected_chunks.append(chunk)
        
        # Add selected chunks to final results
        all_results.extend(selected_chunks)
    
    # Sort all results by score for final ranking
    all_results.sort(key=lambda x: x['score'], reverse=True)
    
    # Take only top 20 results maximum
    all_results = all_results[:20]
    
    print(f"\nFinal results after reranking and filtering: {len(all_results)}")
    if all_results:
        print("\nTop Similarity Scores and URLs:")
        for i, result in enumerate(all_results[:20], 1):  # Show only top 20 in logs
            print(f"{i}. Score: {result['score']:.4f} - URL: {result['metadata']['url']}")
    print("=" * 50)
    
    # Build context from filtered results
    context = "\nRelevant Information:\n"
    total_chars = 0
    max_chars = 30000  # To ensure we don't exceed token limits
    
    for result in all_results:
        chunk_text = f"\nSource: {result['metadata']['url']}\n{result['text']}\n"
        if total_chars + len(chunk_text) > max_chars:
            break
        context += chunk_text
        total_chars += len(chunk_text)
    
    print(f"\nFinal context length: {total_chars} characters")
    return context

def log_conversation(timestamp, user_message, assistant_response, model_name, context, error=None):
    """Log conversation details to JSON file - local directory or HuggingFace Dataset repository"""
    # Create a log entry
    log_entry = {
        "timestamp": timestamp,
        "model_name": model_name,
        "user_message": user_message,
        "assistant_response": assistant_response,
        "context": context,
        "error": str(error) if error else None
    }
    
    # Check if running on Hugging Face Spaces
    is_hf_space = os.getenv('SPACE_ID') is not None
    current_date = datetime.now().strftime("%Y-%m-%d")
    
    if is_hf_space:
        try:
            # Initialize Hugging Face API
            api = HfApi(token=hf_token)
            filename = f"conversation_logs/daily_{current_date}.json"
            
            try:
                # Try to download existing file
                existing_file = api.hf_hub_download(
                    repo_id="Mr-Geo/bas_chat_logs",
                    filename=filename,
                    repo_type="dataset",
                    token=hf_token
                )
                # Load existing logs
                with open(existing_file, 'r', encoding='utf-8') as f:
                    logs = json.load(f)
            except Exception:
                # File doesn't exist yet, start with empty list
                logs = []
            
            # Append new log entry
            logs.append(log_entry)
            
            # Create temporary file with updated logs
            with tempfile.NamedTemporaryFile(mode='w', encoding='utf-8', delete=False, suffix='.json') as temp_file:
                json.dump(logs, temp_file, ensure_ascii=False, indent=2)
                temp_file_path = temp_file.name
            
            # Push to the dataset repository
            operations = [
                CommitOperationAdd(
                    path_in_repo=filename,
                    path_or_fileobj=temp_file_path
                )
            ]
            
            api.create_commit(
                repo_id="Mr-Geo/bas_chat_logs",
                repo_type="dataset",
                operations=operations,
                commit_message=f"Update conversation logs for {current_date}"
            )
            
            # Clean up temporary file
            os.unlink(temp_file_path)
            
        except Exception as e:
            print(f"\n⚠️ Error logging conversation to HuggingFace: {str(e)}")
    else:
        # Local environment - save to file
        try:
            log_dir = Path("logs")
            log_dir.mkdir(exist_ok=True)
            
            log_file = log_dir / f"conversation_log_{current_date}.json"
            
            # Load existing logs if file exists
            if log_file.exists():
                with open(log_file, 'r', encoding='utf-8') as f:
                    logs = json.load(f)
            else:
                logs = []
            
            # Append new log entry
            logs.append(log_entry)
            
            # Write updated logs
            with open(log_file, 'w', encoding='utf-8') as f:
                json.dump(logs, f, ensure_ascii=False, indent=2)
                
        except Exception as e:
            print(f"\n⚠️ Error logging conversation locally: {str(e)}")

def chat_response(message, history, model_name):
    """Chat response function for Gradio interface"""
    try:
        # Get context and timestamp
        context = get_context(message)
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        # Build messages list
        messages = [{
            "role": "system",
            "content": f"""You are an AI assistant for the British Antarctic Survey (BAS). Your responses should be based ONLY on the context provided below.
IMPORTANT INSTRUCTIONS:
1. ALWAYS thoroughly check the provided context before saying you don't have information
2. If you find ANY relevant information in the context, use it - even if it's not complete
3. If you find time-sensitive information in the context, share it - it's current as of when the context was retrieved
4. When citing sources, put them on a new line after the relevant information like this:
   Here is some information about BAS.
   Source: https://www.bas.ac.uk/example
5. Do not say things like:
   - "I don't have access to real-time information"
   - "I cannot browse the internet"
   Instead, share what IS in the context, and only say "I don't have enough information" if you truly find nothing relevant to the users question.
6. Keep responses:
   - With emojis where appropriate
   - Without duplicate source citations
   - Based strictly on the context below

Current Time: {timestamp}

Context: {context}"""
        }]
        
        print("\n\n==========START Contents of the message being sent to the LLM==========\n")
        print(messages)
        print("\n\n==========END Contents of the message being sent to the LLM==========\n")

        # Add history and current message
        if history:
            for h in history:
                messages.append({"role": "user", "content": f"{str(h[0])} at BAS"})
                if h[1]:  # If there's a response
                    messages.append({"role": "assistant", "content": str(h[1])})
        
        messages.append({"role": "user", "content": str(message)})
        
        # Get response
        response = ""
        completion = client.chat.completions.create(
            model=model_name,
            messages=messages,
            temperature=0.7,
            max_tokens=2500,
            top_p=0.95,
            stream=True
        )
        
        print("\n=== LLM Response Start ===")
        thinking_process = ""
        final_response = ""
        is_thinking = False
        
        for chunk in completion:
            if chunk.choices[0].delta.content:
                content = chunk.choices[0].delta.content
                print(content, end='', flush=True)
                
                # Check for thinking tags
                if "<think>" in content:
                    is_thinking = True
                    continue
                elif "</think>" in content:
                    is_thinking = False
                    # Create collapsible thinking section
                    if thinking_process:
                        final_response = f"""<details>
<summary>πŸ€” <u>Click to see 'thinking' process</u></summary>
<div style="font-size: 0.9em;">
<i>πŸ’­{thinking_process}</i>
</div>
<hr style="margin: 0; height: 2px;">
</details>

{final_response}"""
                    continue
                
                # Append content to appropriate section
                if is_thinking:
                    thinking_process += content
                else:
                    final_response += content
                    yield final_response
        
        log_conversation(timestamp, message, final_response, model_name, context)
        print("\n=== LLM Response End ===\n")

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        print(f"\nERROR: {error_msg}")
        log_conversation(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 
                       message, error_msg, model_name, context, error=e)
        yield error_msg
        
if __name__ == "__main__":
    try:
        print("\n=== Starting Application ===")
        
        
        Path("logs").mkdir(exist_ok=True)
        
        
        print("Initialising ChromaDB...")
        chroma_client, collection, reranker = initialize_system()
        print(f"Found {collection.count()} documents in collection")
        
        print("\nCreating Gradio interface...")
        
        
        demo = gr.Blocks()
        
        with demo:
            gr.Markdown("# πŸŒβ„οΈBritish Antarctic Survey Website Chat Assistant πŸ§ŠπŸ€–")
            gr.Markdown("Accesses text data from 11,982 unique BAS URLs (6GB [Vector Database](https://huggingface.co/datasets/Mr-Geo/chroma_db/tree/main/) πŸ“š extracted 02/02/2025) Created with open source technologies: [Gradio](https://gradio.app) for the interface 🎨, [Groq](https://groq.com) for LLM processing ⚑, and [Chroma](https://www.trychroma.com/) as the vector database πŸ’»")
            model_selector = gr.Dropdown(
                choices=[
                    "llama-3.1-8b-instant",
                    "llama-3.3-70b-versatile",
                    "llama-3.3-70b-specdec",
                    "mixtral-8x7b-32768",
                    "deepseek-r1-distill-llama-70b"
                ],
                value="llama-3.1-8b-instant",
                label="Select AI Large Language Model πŸ€–",
                info="Choose which AI model to use for responses (all models running on [GroqCloud](https://groq.com/groqrack/)"
            )
            
            chatbot = gr.Chatbot(height=600)
            with gr.Row(equal_height=True):
                msg = gr.Textbox(
                    placeholder="What would you like to know? Or choose an example question...❓",
                    label="Your question",
                    show_label=True,
                    container=True,
                    scale=20
                )
                send = gr.Button("Send ⬆️", scale=1, min_width=50)
            clear = gr.Button("Clear chat history 🧹 (Click here if any errors are returned)")
            
            gr.Examples(
                examples=[
                    "What research stations does BAS operate in Antarctica? πŸ”οΈ",
                    "Tell me about the RRS Sir David Attenborough 🚒",
                    "What kind of science and research does BAS do? πŸ”¬",
                    "What is BAS doing about climate change? 🌑️",
                ],
                inputs=msg,
            )
            
            def user(user_message, history):
                return "", history + [[user_message, None]]
            
            def bot(history, model_name):
                if history and history[-1][1] is None:
                    for response in chat_response(history[-1][0], history[:-1], model_name):
                        history[-1][1] = response
                        yield history
            
            msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
                bot, [chatbot, model_selector], chatbot
            )
            send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
                bot, [chatbot, model_selector], chatbot
            )
            
            clear.click(lambda: None, None, chatbot, queue=False)
            gr.Markdown("<footer style='text-align: center; margin-top: 5px;'>πŸ€– AI-generated content; while the Chat Assistant strives for accuracy, errors may occur; please thoroughly check critical information πŸ€–<br>⚠️ <strong><u>Disclaimer: This system was not produced by the British Antarctic Survey (BAS) and AI generated output does not reflect the views or opinions of BAS</u></strong> ⚠️ <br>(just a bit of fun :D)</footer>")
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
        
    except Exception as e:
        print(f"\nERROR: {str(e)}")
        raise