Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelWithLMHead | |
import torch | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = "cpu" | |
tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases") | |
model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device) | |
input_query=["data science beginner"] | |
query = "<|startoftext|> " + input_query[0] + " ~~" | |
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) | |
sample_outputs = model.generate(input_ids, | |
do_sample=True, | |
num_beams=1, | |
max_length=256, | |
temperature=0.9, | |
top_k = 30, | |
num_return_sequences=100) | |
content = [] | |
for i in range(len(sample_outputs)): | |
r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0] | |
r = r.split(' ~~ ')[1] | |
if r not in content: | |
content.append(r) | |
st.write(content) | |