Spaces:
Sleeping
Sleeping
File size: 1,181 Bytes
f41f56e ac462f6 29a6b30 f41f56e 29a6b30 f41f56e 29a6b30 f41f56e 29a6b30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import streamlit as st
from transformers import AutoTokenizer, AutoModelWithLMHead
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases")
model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device)
input_query=["data science beginner"]
query = "<|startoftext|> " + input_query[0] + " ~~"
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device)
sample_outputs = model.generate(input_ids,
do_sample=True,
num_beams=1,
max_length=256,
temperature=0.9,
top_k = 30,
num_return_sequences=100)
content = []
for i in range(len(sample_outputs)):
r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0]
r = r.split(' ~~ ')[1]
if r not in content:
content.append(r)
st.write(content)
|