Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
|
3 |
+
device = "cuda" # the device to load the model onto
|
4 |
+
|
5 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
7 |
+
|
8 |
+
messages = [
|
9 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
10 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
11 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
12 |
+
]
|
13 |
+
|
14 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
15 |
+
|
16 |
+
model_inputs = encodeds.to(device)
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
20 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
21 |
+
print(decoded[0])
|