Lab04 / app.py
Moditha24's picture
Create app.py
ff6c981 verified
raw
history blame
1.65 kB
import gradio as gr
import numpy as np
# Define input components for housing price prediction
input_module1 = gr.Slider(minimum=500, maximum=5000, step=100, label="Square Footage") # Slider for square footage
input_module2 = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Bedrooms") # Slider for number of bedrooms
input_module3 = gr.Dropdown(choices=["Urban", "Suburban", "Rural"], label="Location") # Dropdown for location
input_module4 = gr.Checkbox(label="Has Garden") # Checkbox for garden
input_module5 = gr.Checkbox(label="Has Garage") # Checkbox for garage
# Define output components
output_module1 = gr.Textbox(label="Predicted Price") # Textbox for predicted price
output_module2 = gr.Textbox(label="Prediction Explanation") # Textbox for explanation
# Function for housing price prediction (simulate with random values)
def predict_price(square_footage, num_bedrooms, location, has_garden, has_garage):
price = square_footage * 200 + num_bedrooms * 50000 # Simplified formula
if location == "Urban":
price *= 1.5
if has_garden:
price += 20000
if has_garage:
price += 15000
explanation = f"Based on {square_footage} sqft, {num_bedrooms} bedrooms, location {location}, garden: {has_garden}, garage: {has_garage}, the predicted price is ${price:.2f}."
return f"${price:.2f}", explanation
# Launch the Gradio interface for housing price prediction
gr.Interface(fn=predict_price,
inputs=[input_module1, input_module2, input_module3,
input_module4, input_module5],
outputs=[output_module1, output_module2]).launch()