Moditha24 commited on
Commit
ff6c981
·
verified ·
1 Parent(s): 297330d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+
4
+ # Define input components for housing price prediction
5
+ input_module1 = gr.Slider(minimum=500, maximum=5000, step=100, label="Square Footage") # Slider for square footage
6
+ input_module2 = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Bedrooms") # Slider for number of bedrooms
7
+ input_module3 = gr.Dropdown(choices=["Urban", "Suburban", "Rural"], label="Location") # Dropdown for location
8
+ input_module4 = gr.Checkbox(label="Has Garden") # Checkbox for garden
9
+ input_module5 = gr.Checkbox(label="Has Garage") # Checkbox for garage
10
+
11
+ # Define output components
12
+ output_module1 = gr.Textbox(label="Predicted Price") # Textbox for predicted price
13
+ output_module2 = gr.Textbox(label="Prediction Explanation") # Textbox for explanation
14
+
15
+ # Function for housing price prediction (simulate with random values)
16
+ def predict_price(square_footage, num_bedrooms, location, has_garden, has_garage):
17
+ price = square_footage * 200 + num_bedrooms * 50000 # Simplified formula
18
+ if location == "Urban":
19
+ price *= 1.5
20
+ if has_garden:
21
+ price += 20000
22
+ if has_garage:
23
+ price += 15000
24
+
25
+ explanation = f"Based on {square_footage} sqft, {num_bedrooms} bedrooms, location {location}, garden: {has_garden}, garage: {has_garage}, the predicted price is ${price:.2f}."
26
+
27
+ return f"${price:.2f}", explanation
28
+
29
+ # Launch the Gradio interface for housing price prediction
30
+ gr.Interface(fn=predict_price,
31
+ inputs=[input_module1, input_module2, input_module3,
32
+ input_module4, input_module5],
33
+ outputs=[output_module1, output_module2]).launch()