from config import MLP | |
from mmcv import Config | |
from mmdet.models import build_detector | |
import torch | |
def main(): | |
# Print model type from config | |
print(f"Model type: {MLP['type']}") | |
# Build the model from the config dict | |
model = build_detector(MLP, train_cfg=MLP.get('train_cfg'), test_cfg=MLP.get('test_cfg')) | |
# Set model to evaluation mode | |
model.eval() | |
# Print model architecture summary | |
print(model) | |
# Optional: dummy input test (batch of 1 image with 3 channels, 800x1333) | |
dummy_input = torch.randn(1, 3, 800, 1333) | |
with torch.no_grad(): | |
result = model.forward_dummy(dummy_input) | |
print("Forward pass output:", result) | |
if __name__ == "__main__": | |
main() | |