from config import MLP from mmcv import Config from mmdet.models import build_detector import torch def main(): # Print model type from config print(f"Model type: {MLP['type']}") # Build the model from the config dict model = build_detector(MLP, train_cfg=MLP.get('train_cfg'), test_cfg=MLP.get('test_cfg')) # Set model to evaluation mode model.eval() # Print model architecture summary print(model) # Optional: dummy input test (batch of 1 image with 3 channels, 800x1333) dummy_input = torch.randn(1, 3, 800, 1333) with torch.no_grad(): result = model.forward_dummy(dummy_input) print("Forward pass output:", result) if __name__ == "__main__": main()