Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import json | |
import easyocr | |
import datasets | |
import socket | |
import requests | |
import keras_ocr | |
import numpy as np | |
import gradio as gr | |
import pandas as pd | |
import tensorflow as tf | |
import re as r | |
from PIL import Image | |
from datasets import Image | |
from datetime import datetime | |
from paddleocr import PaddleOCR | |
from urllib.request import urlopen | |
from huggingface_hub import Repository, upload_file | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
# img_path = 'exp.jpeg' | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' '+ text | |
return finaltext | |
""" | |
Keras OCR | |
""" | |
def ocr_with_keras(img): | |
output_text = '' | |
pipeline=keras_ocr.pipeline.Pipeline() | |
images=[keras_ocr.tools.read(img)] | |
predictions=pipeline.recognize(images) | |
first=predictions[0] | |
for text,box in first: | |
output_text += ' '+ text | |
return output_text | |
""" | |
easy OCR | |
""" | |
# gray scale image | |
def get_grayscale(image): | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Thresholding or Binarization | |
def thresholding(src): | |
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] | |
def ocr_with_easy(img): | |
gray_scale_image=get_grayscale(img) | |
thresholding(gray_scale_image) | |
cv2.imwrite('image.png',gray_scale_image) | |
reader = easyocr.Reader(['th','en']) | |
bounds = reader.readtext('image.png',paragraph="False",detail = 0) | |
bounds = ''.join(bounds) | |
return bounds | |
""" | |
Generate OCR | |
""" | |
def generate_ocr(Method,input_image): | |
text_output = '' | |
if (input_image).any(): | |
print("Method___________________",Method) | |
if Method == 'EasyOCR': | |
text_output = ocr_with_easy(input_image) | |
if Method == 'KerasOCR': | |
text_output = ocr_with_keras(input_image) | |
if Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(input_image) | |
flag(Method,input_image,text_output,ip_address,location) | |
return text_output | |
else: | |
raise gr.Error("Please upload an image!!!!") | |
image = gr.Image(shape=(300, 300)) | |
method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR",elem_id="radio_div") | |
output = gr.Textbox(label="Output",elem_id="opbox") | |
demo = gr.Interface( | |
generate_ocr, | |
[method,image], | |
output, | |
title="Optical Character Recognition", | |
css=".gradio-container {background-color: #C0E1F2} #radio_div {background-color: #ADA5EC; font-size: 40px;} #btn {background-color: #94D68B; font-size: 20px;} #opbox {background-color: #ADA5EC;}", | |
article="""<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> and contact us at | |
<a href="mailto:[email protected]" target="_blank">[email protected]</a> And don't forget to check out more interesting | |
<a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.</p> | |
<p style='text-align: center;'>Developed by :<a href="https://www.pragnakalp.com" target="_blank"> Pragnakalp Techlabs</a></p>""" | |
) | |
demo.launch() | |
HF_TOKEN = os.environ.get("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") | |
DATASET_NAME = "ocr-image-to-text" | |
DATASET_REPO_URL = f"https://huggingface.co/datasets/Mo41/{DATASET_NAME}" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
DATASET_REPO_ID = "Mo41/ocr-image-to-text" | |
print("is none?", HF_TOKEN is None) | |
REPOSITORY_DIR = "data" | |
LOCAL_DIR = 'data_local' | |
os.makedirs(LOCAL_DIR,exist_ok=True) | |
repo = Repository( | |
local_dir="ocr_data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
repo.git_pull() | |
""" | |
Save generated details | |
""" | |
def dump_json(thing,file): | |
with open(file,'w+',encoding="utf8") as f: | |
json.dump(thing,f) | |
def flag(Method,input_image,text_output,ip_address,location): | |
try: | |
print("saving data------------------------") | |
adversarial_number = 0 | |
adversarial_number = 0 if None else adversarial_number | |
metadata_name = datetime.now().strftime('%Y-%m-%d %H-%M-%S') | |
SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name) | |
os.makedirs(SAVE_FILE_DIR,exist_ok=True) | |
image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png') | |
try: | |
Image.fromarray(input_image).save(image_output_filename) | |
except Exception: | |
raise Exception(f"Had issues saving PIL image to file") | |
# Write metadata.json to file | |
json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl') | |
metadata= {'id':metadata_name,'method':Method, | |
'File_name':'image.png','generated_text':text_output, | |
'ip_address': ip_address,'loc': location} | |
dump_json(metadata,json_file_path) | |
# Simply upload the image file and metadata using the hub's | |
upload_file | |
# Upload the image | |
repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join | |
(metadata_name,'image.png')) | |
_ = upload_file(path_or_fileobj = image_output_filename, | |
path_in_repo =repo_image_path, | |
repo_id=DATASET_REPO_ID, | |
repo_type='dataset', | |
token=HF_TOKEN | |
) | |
# Upload the metadata | |
repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join | |
(metadata_name,'metadata.jsonl')) | |
_ = upload_file(path_or_fileobj = json_file_path, | |
path_in_repo =repo_json_path, | |
repo_id= DATASET_REPO_ID, | |
repo_type='dataset', | |
token=HF_TOKEN | |
) | |
adversarial_number+=1 | |
repo.git_pull() | |
return "*****Logs save successfully!!!!" | |
except Exception as e: | |
return "Error whils saving logs -->"+ str(e) |