File size: 6,027 Bytes
b5677e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import cv2
import json
import easyocr
import datasets
import socket
import requests
import keras_ocr

import numpy as np
import gradio as gr
import pandas as pd
import tensorflow as tf
import re as r

from PIL import Image
from datasets import Image
from datetime import datetime
from paddleocr import PaddleOCR
from urllib.request import urlopen
from huggingface_hub import Repository, upload_file

"""
Paddle OCR
"""
def ocr_with_paddle(img):
    finaltext = ''
    ocr = PaddleOCR(lang='en', use_angle_cls=True)
    # img_path = 'exp.jpeg'
    result = ocr.ocr(img)
    
    for i in range(len(result[0])):
        text = result[0][i][1][0]
        finaltext += ' '+ text
    return finaltext

"""
Keras OCR
"""
def ocr_with_keras(img):
    output_text = ''
    pipeline=keras_ocr.pipeline.Pipeline()
    images=[keras_ocr.tools.read(img)]
    predictions=pipeline.recognize(images)
    first=predictions[0]
    for text,box in first:
        output_text += ' '+ text
    return output_text

"""
easy OCR
"""
# gray scale image
def get_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Thresholding or Binarization
def thresholding(src):
    return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
    
def ocr_with_easy(img):
    gray_scale_image=get_grayscale(img)
    thresholding(gray_scale_image)
    cv2.imwrite('image.png',gray_scale_image)
    reader = easyocr.Reader(['th','en'])
    bounds = reader.readtext('image.png',paragraph="False",detail = 0)
    bounds = ''.join(bounds)
    return bounds

"""
Generate OCR
"""
def generate_ocr(Method,input_image):
    text_output = ''
    if (input_image).any():
        print("Method___________________",Method)
        if Method == 'EasyOCR':
            text_output = ocr_with_easy(input_image)
        if Method == 'KerasOCR':
            text_output = ocr_with_keras(input_image)
        if Method == 'PaddleOCR':
            text_output = ocr_with_paddle(input_image)
        
        flag(Method,input_image,text_output,ip_address,location)
        return text_output
    else:
        raise gr.Error("Please upload an image!!!!")

image = gr.Image(shape=(300, 300))
method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR",elem_id="radio_div")
output = gr.Textbox(label="Output",elem_id="opbox")

demo = gr.Interface(
    generate_ocr,
    [method,image],
    output,
    title="Optical Character Recognition",
    css=".gradio-container {background-color: #C0E1F2} #radio_div {background-color: #ADA5EC; font-size: 40px;} #btn {background-color: #94D68B; font-size: 20px;} #opbox {background-color: #ADA5EC;}",
    article="""<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> and contact us at 
                    <a href="mailto:[email protected]" target="_blank">[email protected]</a> And don't forget to check out more interesting 
                    <a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.</p>
                    <p style='text-align: center;'>Developed by :<a href="https://www.pragnakalp.com" target="_blank"> Pragnakalp Techlabs</a></p>"""
    
)
demo.launch()

HF_TOKEN = os.environ.get("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")
DATASET_NAME = "ocr-image-to-text"

DATASET_REPO_URL = f"https://huggingface.co/datasets/Mo41/{DATASET_NAME}"
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_REPO_ID = "Mo41/ocr-image-to-text"
print("is none?", HF_TOKEN is None)
REPOSITORY_DIR = "data"
LOCAL_DIR = 'data_local'
os.makedirs(LOCAL_DIR,exist_ok=True)

repo = Repository(
    local_dir="ocr_data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
repo.git_pull()


"""
Save generated details
"""
def dump_json(thing,file):
    with open(file,'w+',encoding="utf8") as f:
        json.dump(thing,f)

def flag(Method,input_image,text_output,ip_address,location):
    try:
        print("saving data------------------------")
        adversarial_number = 0
        adversarial_number = 0 if None else adversarial_number
        metadata_name = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
        SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
        os.makedirs(SAVE_FILE_DIR,exist_ok=True)
        image_output_filename = os.path.join(SAVE_FILE_DIR,'image.png')
        try:
            Image.fromarray(input_image).save(image_output_filename)
            
        except Exception:
            raise Exception(f"Had issues saving PIL image to file")
        # Write metadata.json to file
        json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl')
        metadata= {'id':metadata_name,'method':Method,
                   'File_name':'image.png','generated_text':text_output,
                    'ip_address': ip_address,'loc': location}        
        dump_json(metadata,json_file_path)  
            
        # Simply upload the image file and metadata using the hub's
          upload_file
        # Upload the image
        repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join
                          (metadata_name,'image.png'))
        
        _ = upload_file(path_or_fileobj = image_output_filename,
                    path_in_repo =repo_image_path,
                    repo_id=DATASET_REPO_ID,
                    repo_type='dataset',
                    token=HF_TOKEN
                ) 
        # Upload the metadata
        repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join
                        (metadata_name,'metadata.jsonl'))
        _ = upload_file(path_or_fileobj = json_file_path,
                    path_in_repo =repo_json_path,
                    repo_id= DATASET_REPO_ID,
                    repo_type='dataset',
                    token=HF_TOKEN
                )        
        adversarial_number+=1
        repo.git_pull()    
        return "*****Logs save successfully!!!!"
    except Exception as e:
        return "Error whils saving logs -->"+ str(e)