File size: 10,940 Bytes
14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 a53a500 2268215 a6fe534 58bf5d4 14c65a5 58bf5d4 14c65a5 58bf5d4 a53a500 2268215 a6fe534 6fec00e 58bf5d4 14c65a5 58bf5d4 733bc9e 58bf5d4 14c65a5 0e61413 58bf5d4 14c65a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import marimo
__generated_with = "0.11.17"
app = marimo.App(width="full")
@app.cell
def _():
import marimo as mo
import pandas as pd
import os
import io
import json
return io, json, mo, os, pd
@app.cell
def _(mo):
### Credentials for the watsonx.ai SDK clien
# Endpoints
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
regions = {
"US": "https://us-south.ml.cloud.ibm.com",
"EU": "https://eu-de.ml.cloud.ibm.com",
"GB": "https://eu-gb.ml.cloud.ibm.com",
"JP": "https://jp-tok.ml.cloud.ibm.com",
"AU": "https://au-syd.ml.cloud.ibm.com",
"CA": "https://ca-tor.ml.cloud.ibm.com"
}
# Create a form with multiple elements
client_instantiation_form = (
mo.md('''
###**watsonx.ai credentials:**
{wx_region}
{wx_api_key}
{project_id}
''')
.batch(
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
,)
.form(show_clear_button=True, bordered=False)
)
return client_instantiation_form, regions, wx_platform_url
@app.cell
def _(client_instantiation_form, mo):
from ibm_watsonx_ai import APIClient, Credentials
import requests
def get_iam_token(api_key):
return requests.post(
'https://iam.cloud.ibm.com/identity/token',
headers={'Content-Type': 'application/x-www-form-urlencoded'},
data={'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': api_key}
).json()['access_token']
def setup_task_credentials(project_client):
# Get existing task credentials
existing_credentials = project_client.task_credentials.get_details()
# Delete existing credentials if any
if "resources" in existing_credentials and existing_credentials["resources"]:
for cred in existing_credentials["resources"]:
cred_id = project_client.task_credentials.get_id(cred)
project_client.task_credentials.delete(cred_id)
# Store new credentials
return project_client.task_credentials.store()
if client_instantiation_form.value:
### Instantiate the watsonx.ai client
wx_api_key = client_instantiation_form.value["wx_api_key"]
wx_credentials = Credentials(
url=client_instantiation_form.value["wx_region"],
api_key=wx_api_key
)
project_client = APIClient(credentials=wx_credentials, project_id=client_instantiation_form.value["project_id"])
# deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"])
token = get_iam_token(wx_api_key)
task_credentials_details = setup_task_credentials(project_client)
else:
project_client = None
# deployment_client = None
task_credentials_details = None
wx_api_key = None
token = None
client_status = mo.md("### Client Instantiation Status will turn Green When Ready")
if project_client is not None:
client_callout_kind = "success"
else:
client_callout_kind = "neutral"
return (
APIClient,
Credentials,
client_callout_kind,
client_status,
get_iam_token,
project_client,
requests,
setup_task_credentials,
task_credentials_details,
token,
wx_api_key,
wx_credentials,
)
@app.cell
def _(client_callout_kind, client_instantiation_form, client_status, mo):
client_callout = mo.callout(client_status, kind=client_callout_kind)
client_stack = mo.hstack([client_instantiation_form, client_callout], align="center", justify="space-around")
client_stack
return client_callout, client_stack
@app.cell
def _(mo, project_client):
if project_client:
# model_specs = project_client.foundation_models.get_chat_model_specs() ### if you want models that support chat_completions via the RestAPI or Python SDK.
model_specs = project_client.foundation_models.get_model_specs()
resources = model_specs["resources"]
model_id_list = []
for resource in resources:
model_id_list.append(resource["model_id"])
model_selection = mo.ui.table(
model_id_list,
selection="single", # Only allow selecting one row
label="Select a model to use.",
page_size=30,
initial_selection=[16]
)
else:
model_specs = []
resources = []
model_id_list = []
model_selection = mo.md("**Instantiate a watsonx.ai client with a valid project_id**")
return model_id_list, model_selection, model_specs, resource, resources
@app.cell
def _(mo, model_selection):
from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
# Create a form with multiple elements
llm_parameters = (
mo.md('''
###**LLM parameters:**
{decoding_method}
{repetition_penalty}
{min_tokens}
{max_tokens}
{stop_sequences}
''')
.batch(
### Temporary version with preset credentials
decoding_method = mo.ui.dropdown(options=["greedy", "sample"], value="greedy",label="Decoding Method:"),
min_tokens = mo.ui.number(start=1, stop=1, label="Minimum Output Tokens:"),
max_tokens = mo.ui.number(start=1, stop=8096, value=500, label="Maximum Output Tokens:"),
repetition_penalty = mo.ui.number(start=1.0, stop=2.0, step=0.01, label="Repetition Penalty:"),
stop_sequences = mo.ui.text(label="Stopping Sequences:", value="['<|end_of_text|>','</s>']", placeholder="List of Strings, e.g. ['<|end_of_text|>','</s>']", full_width=False)
).form(show_clear_button=True, bordered=True)
)
# llm_parameters
llm_setup = mo.hstack([model_selection, llm_parameters], align="center", justify="space-around")
llm_setup
return GenParams, ModelInference, llm_parameters, llm_setup
@app.cell
def _(
GenParams,
ModelInference,
llm_parameters,
model_selection,
project_client,
):
import ast
if llm_parameters.value:
params = {
GenParams.DECODING_METHOD: llm_parameters.value['decoding_method'],
GenParams.MAX_NEW_TOKENS: llm_parameters.value['max_tokens'],
GenParams.MIN_NEW_TOKENS: llm_parameters.value['min_tokens'],
GenParams.REPETITION_PENALTY: llm_parameters.value['repetition_penalty'],
GenParams.STOP_SEQUENCES: ast.literal_eval(llm_parameters.value['stop_sequences']),
GenParams.RETURN_OPTIONS: {
'input_text': False,
'generated_tokens': False,
'input_tokens': True,
'token_logprobs': False
}
}
inf_model = ModelInference(api_client=project_client, model_id=model_selection.value[0], params=params)
else:
params = {}
inf_model = None
return ast, inf_model, params
@app.cell
def _(mo):
prompt_template_mistral = """[INST] write your prompt here [/INST]"""
prompt_template_llama = """<|start_header_id|>user<|end_header_id|>\n\n write your prompt here <|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
templates = {
"mistral": prompt_template_mistral,
"llama": prompt_template_llama
}
template_selector = mo.ui.dropdown(templates, value="mistral", label="Select Prompt Template with Syntax:")
return (
prompt_template_llama,
prompt_template_mistral,
template_selector,
templates,
)
@app.cell
def _(mo, template_selector):
prompt_editor = (
mo.md('''
#### **Create your prompt here by editing the template:**
{editor}
''')
.batch(
editor = mo.ui.code_editor(value=template_selector.value, language="python", min_height=50)
)
.form(show_clear_button=True, bordered=False)
)
return (prompt_editor,)
@app.cell
def _(mo, prompt_editor, template_selector):
prompt_setup = mo.vstack([template_selector, prompt_editor])
prompt_setup
return (prompt_setup,)
@app.cell
def _(mo, prompt_editor):
_ = prompt_editor.value
if prompt_editor.value is not None:
prompt_printout = mo.md(f"**Current prompt template:**\n\n {prompt_editor.value['editor']}")
else:
prompt_printout = mo.md(f"**Submit a prompt template.**")
prompt_printout
return (prompt_printout,)
@app.cell
def _(inf_model, params, process_with_llm, prompt_editor):
_ = prompt_editor.value
if prompt_editor.value is not None:
prompt_response = process_with_llm(inf_model, prompt_template=prompt_editor.value['editor'], params=params, return_full_json_response=False)
prompt_response_full = process_with_llm(inf_model, prompt_template=prompt_editor.value['editor'], params=params, return_full_json_response=True)
else:
prompt_response = []
prompt_response_full = []
return prompt_response, prompt_response_full
@app.cell
def _(mo, prompt_response, prompt_response_full):
mo.vstack([mo.md(f"{prompt_response}"),prompt_response_full], align="center",justify="space-around")
return
@app.cell
def _():
def process_with_llm(inf_model, prompt_template, params, return_full_json_response=False):
"""
Process a prompt with an LLM model.
Returns full JSON response or just text based on return_full_json_response parameter.
"""
# Check for required model
if not inf_model:
print("Missing required inference model")
return None
# Extract prompt value if it's a dict
if hasattr(prompt_template, 'get') and prompt_template.get('value'):
prompt_template = prompt_template['value']
try:
# Call appropriate method based on return type preference
if return_full_json_response:
return inf_model.generate(prompt=prompt_template, params=params)
else:
return inf_model.generate_text(prompt=prompt_template, params=params)
except Exception as e:
print(f"Error during inference: {str(e)}")
return None
return (process_with_llm,)
if __name__ == "__main__":
app.run()
|