Create app_v3.py
Browse files
app_v3.py
ADDED
@@ -0,0 +1,1359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import marimo
|
2 |
+
|
3 |
+
__generated_with = "0.11.16"
|
4 |
+
app = marimo.App(width="medium")
|
5 |
+
|
6 |
+
|
7 |
+
@app.cell
|
8 |
+
def _():
|
9 |
+
import marimo as mo
|
10 |
+
import os
|
11 |
+
return mo, os
|
12 |
+
|
13 |
+
|
14 |
+
@app.cell
|
15 |
+
def _():
|
16 |
+
def get_markdown_content(file_path):
|
17 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
18 |
+
content = file.read()
|
19 |
+
return content
|
20 |
+
return (get_markdown_content,)
|
21 |
+
|
22 |
+
|
23 |
+
@app.cell
|
24 |
+
def _(get_markdown_content, mo):
|
25 |
+
intro_text = get_markdown_content('intro_markdown/intro.md')
|
26 |
+
intro_marimo = get_markdown_content('intro_markdown/intro_marimo.md')
|
27 |
+
intro_notebook = get_markdown_content('intro_markdown/intro_notebook.md')
|
28 |
+
intro_comparison = get_markdown_content('intro_markdown/intro_comparison.md')
|
29 |
+
|
30 |
+
intro = mo.carousel([
|
31 |
+
mo.md(f"{intro_text}"),
|
32 |
+
mo.md(f"{intro_marimo}"),
|
33 |
+
mo.md(f"{intro_notebook}"),
|
34 |
+
mo.md(f"{intro_comparison}"),
|
35 |
+
])
|
36 |
+
|
37 |
+
mo.accordion({"## Notebook Introduction":intro})
|
38 |
+
return intro, intro_comparison, intro_marimo, intro_notebook, intro_text
|
39 |
+
|
40 |
+
|
41 |
+
@app.cell
|
42 |
+
def _(os):
|
43 |
+
### Imports
|
44 |
+
from typing import (
|
45 |
+
Any, Dict, List, Optional, Pattern, Set, Union, Tuple
|
46 |
+
)
|
47 |
+
from pathlib import Path
|
48 |
+
from urllib.request import urlopen
|
49 |
+
# from rich.markdown import Markdown as Markd
|
50 |
+
from rich.text import Text
|
51 |
+
from rich import print
|
52 |
+
from tqdm import tqdm
|
53 |
+
from enum import Enum
|
54 |
+
import pandas as pd
|
55 |
+
import tempfile
|
56 |
+
import requests
|
57 |
+
import getpass
|
58 |
+
import urllib3
|
59 |
+
import base64
|
60 |
+
import time
|
61 |
+
import json
|
62 |
+
import uuid
|
63 |
+
import ssl
|
64 |
+
import ast
|
65 |
+
import re
|
66 |
+
|
67 |
+
pd.set_option('display.max_columns', None)
|
68 |
+
pd.set_option('display.max_rows', None)
|
69 |
+
pd.set_option('display.max_colwidth', None)
|
70 |
+
pd.set_option('display.width', None)
|
71 |
+
|
72 |
+
# Set explicit temporary directory
|
73 |
+
os.environ['TMPDIR'] = '/tmp'
|
74 |
+
|
75 |
+
# Make sure Python's tempfile module also uses this directory
|
76 |
+
tempfile.tempdir = '/tmp'
|
77 |
+
return (
|
78 |
+
Any,
|
79 |
+
Dict,
|
80 |
+
Enum,
|
81 |
+
List,
|
82 |
+
Optional,
|
83 |
+
Path,
|
84 |
+
Pattern,
|
85 |
+
Set,
|
86 |
+
Text,
|
87 |
+
Tuple,
|
88 |
+
Union,
|
89 |
+
ast,
|
90 |
+
base64,
|
91 |
+
getpass,
|
92 |
+
json,
|
93 |
+
pd,
|
94 |
+
print,
|
95 |
+
re,
|
96 |
+
requests,
|
97 |
+
ssl,
|
98 |
+
tempfile,
|
99 |
+
time,
|
100 |
+
tqdm,
|
101 |
+
urllib3,
|
102 |
+
urlopen,
|
103 |
+
uuid,
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
@app.cell
|
108 |
+
def _(mo):
|
109 |
+
### Credentials for the watsonx.ai SDK client
|
110 |
+
|
111 |
+
# Endpoints
|
112 |
+
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
|
113 |
+
regions = {
|
114 |
+
"US": "https://us-south.ml.cloud.ibm.com",
|
115 |
+
"EU": "https://eu-de.ml.cloud.ibm.com",
|
116 |
+
"GB": "https://eu-gb.ml.cloud.ibm.com",
|
117 |
+
"JP": "https://jp-tok.ml.cloud.ibm.com",
|
118 |
+
"AU": "https://au-syd.ml.cloud.ibm.com",
|
119 |
+
"CA": "https://ca-tor.ml.cloud.ibm.com"
|
120 |
+
}
|
121 |
+
|
122 |
+
# Create a form with multiple elements
|
123 |
+
client_instantiation_form = (
|
124 |
+
mo.md('''
|
125 |
+
###**watsonx.ai credentials:**
|
126 |
+
|
127 |
+
{wx_region}
|
128 |
+
|
129 |
+
{wx_api_key}
|
130 |
+
|
131 |
+
{space_id}
|
132 |
+
''').style(max_height="300px", overflow="auto", border_color="blue")
|
133 |
+
.batch(
|
134 |
+
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
|
135 |
+
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
|
136 |
+
# project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
|
137 |
+
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
|
138 |
+
,)
|
139 |
+
.form(show_clear_button=True, bordered=False)
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
# client_instantiation_form
|
144 |
+
return client_instantiation_form, regions, wx_platform_url
|
145 |
+
|
146 |
+
|
147 |
+
@app.cell
|
148 |
+
def _(client_instantiation_form, mo):
|
149 |
+
from ibm_watsonx_ai import APIClient, Credentials
|
150 |
+
|
151 |
+
def setup_task_credentials(deployment_client):
|
152 |
+
# Get existing task credentials
|
153 |
+
existing_credentials = deployment_client.task_credentials.get_details()
|
154 |
+
|
155 |
+
# Delete existing credentials if any
|
156 |
+
if "resources" in existing_credentials and existing_credentials["resources"]:
|
157 |
+
for cred in existing_credentials["resources"]:
|
158 |
+
cred_id = deployment_client.task_credentials.get_id(cred)
|
159 |
+
deployment_client.task_credentials.delete(cred_id)
|
160 |
+
|
161 |
+
# Store new credentials
|
162 |
+
return deployment_client.task_credentials.store()
|
163 |
+
|
164 |
+
if client_instantiation_form.value:
|
165 |
+
### Instantiate the watsonx.ai client
|
166 |
+
wx_credentials = Credentials(
|
167 |
+
url=client_instantiation_form.value["wx_region"],
|
168 |
+
api_key=client_instantiation_form.value["wx_api_key"]
|
169 |
+
)
|
170 |
+
|
171 |
+
# project_client = APIClient(credentials=wx_credentials, project_id=client_instantiation_form.value["project_id"])
|
172 |
+
deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"])
|
173 |
+
|
174 |
+
task_credentials_details = setup_task_credentials(deployment_client)
|
175 |
+
else:
|
176 |
+
# project_client = None
|
177 |
+
deployment_client = None
|
178 |
+
task_credentials_details = None
|
179 |
+
|
180 |
+
template_variant = mo.ui.dropdown(["Base","Stream Files to IBM COS [Example]"], label="Code Template:", value="Base")
|
181 |
+
|
182 |
+
if deployment_client is not None:
|
183 |
+
client_callout_kind = "success"
|
184 |
+
else:
|
185 |
+
client_callout_kind = "neutral"
|
186 |
+
|
187 |
+
client_callout = mo.callout(template_variant, kind=client_callout_kind)
|
188 |
+
|
189 |
+
# client_callout
|
190 |
+
return (
|
191 |
+
APIClient,
|
192 |
+
Credentials,
|
193 |
+
client_callout,
|
194 |
+
client_callout_kind,
|
195 |
+
deployment_client,
|
196 |
+
setup_task_credentials,
|
197 |
+
task_credentials_details,
|
198 |
+
template_variant,
|
199 |
+
wx_credentials,
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
@app.cell
|
204 |
+
def _(
|
205 |
+
client_callout,
|
206 |
+
client_instantiation_form,
|
207 |
+
deploy_fnc,
|
208 |
+
deployment_definition,
|
209 |
+
fm,
|
210 |
+
function_editor,
|
211 |
+
hw_selection_table,
|
212 |
+
mo,
|
213 |
+
purge_tabs,
|
214 |
+
sc_m,
|
215 |
+
schema_editors,
|
216 |
+
selection_table,
|
217 |
+
upload_func,
|
218 |
+
):
|
219 |
+
s1 = mo.md(f'''
|
220 |
+
###**Instantiate your watsonx.ai client:**
|
221 |
+
|
222 |
+
1. Select a region from the dropdown menu
|
223 |
+
|
224 |
+
2. Provide an IBM Cloud Apikey and watsonx.ai deployment space id
|
225 |
+
|
226 |
+
3. Once you submit, the area with the code template will turn green if successful
|
227 |
+
|
228 |
+
4. Select a base (provide baseline format) or example code function template
|
229 |
+
|
230 |
+
---
|
231 |
+
|
232 |
+
{client_instantiation_form}
|
233 |
+
|
234 |
+
---
|
235 |
+
|
236 |
+
{client_callout}
|
237 |
+
|
238 |
+
''')
|
239 |
+
|
240 |
+
sc_tabs = mo.ui.tabs(
|
241 |
+
{
|
242 |
+
"Schema Option Selection": sc_m,
|
243 |
+
"Schema Definition": mo.md(f"""
|
244 |
+
####**Edit the schema definitions you selected in the previous tab.**<br>
|
245 |
+
{schema_editors}"""),
|
246 |
+
}
|
247 |
+
)
|
248 |
+
|
249 |
+
s2 = mo.md(f'''###**Create your function from the template:**
|
250 |
+
|
251 |
+
1. Use the code editor window to create a function to deploy
|
252 |
+
<br>
|
253 |
+
The function must:
|
254 |
+
<br>
|
255 |
+
--- Include a payload and score element
|
256 |
+
<br>
|
257 |
+
--- Have the same function name in both the score = <name>() segment and the Function Name input field below
|
258 |
+
<br>
|
259 |
+
--- Additional details can be found here -> [watsonx.ai - Writing deployable Python functions
|
260 |
+
](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-deploy-py-function-write.html?utm_medium=Exinfluencer&utm_source=ibm_developer&utm_content=in_content_link&utm_term=10006555&utm_id=blogs_awb-tekton-optimizations-for-kubeflow-pipelines-2-0&context=wx&audience=wdp)
|
261 |
+
|
262 |
+
3. Click submit, then proceed to select whether you wish to add:
|
263 |
+
<br>
|
264 |
+
--- An input schema (describing the format of the variables the function takes) **[Optional]**
|
265 |
+
<br>
|
266 |
+
--- An output schema (describing the format of the output results the function returns) **[Optional]**
|
267 |
+
<br>
|
268 |
+
--- An sample input example (showing an example of a mapping of the input and output schema to actual values.) **[Optional]**
|
269 |
+
|
270 |
+
4. Fill in the function name field **(must be exactly the same as in the function editor)**
|
271 |
+
|
272 |
+
5. Add a description and metadata tags **[Optional]**
|
273 |
+
|
274 |
+
---
|
275 |
+
|
276 |
+
{function_editor}
|
277 |
+
|
278 |
+
---
|
279 |
+
|
280 |
+
{sc_tabs}
|
281 |
+
|
282 |
+
---
|
283 |
+
|
284 |
+
{fm}
|
285 |
+
|
286 |
+
''')
|
287 |
+
|
288 |
+
s3 = mo.md(f'''
|
289 |
+
###**Review and Upload your function**
|
290 |
+
|
291 |
+
1. Review the function metadata specs JSON
|
292 |
+
|
293 |
+
2. Select a software specification if necessary (default for python functions is pre-selected), this is the runtime environment of python that your function will run in. Environments on watsonx.ai come pre-packaged with many different libraries, if necessary install new ones by adding them into the function as a `subprocess.check_output('pip install <package_name>', shell=True)` command.
|
294 |
+
|
295 |
+
3. Once your are satisfied, click the upload function button and wait for the response.
|
296 |
+
|
297 |
+
> If you see no table of software specs, you haven't activated your watsonx.ai client.
|
298 |
+
|
299 |
+
---
|
300 |
+
|
301 |
+
{selection_table}
|
302 |
+
|
303 |
+
---
|
304 |
+
|
305 |
+
{upload_func}
|
306 |
+
|
307 |
+
''')
|
308 |
+
|
309 |
+
s4 = mo.md(f'''
|
310 |
+
###**Deploy your function:**
|
311 |
+
|
312 |
+
1. Select a hardware specification (vCPUs/GB) that you want your function deployed on
|
313 |
+
<br>
|
314 |
+
--- XXS and XS cost the same (0.5 CUH per hour, so XS is the better option
|
315 |
+
<br>
|
316 |
+
--- Select larger instances for more resource intensive tasks or runnable jobs
|
317 |
+
|
318 |
+
2. Select the type of deployment:
|
319 |
+
<br>
|
320 |
+
--- Function (Online) for always-on endpoints - Always available and low latency, but consume resources continuously for every hour they are deployed.
|
321 |
+
<br>
|
322 |
+
--- Batch (Batch) for runnable jobs - Only consume resources during job runs, but aren't as flexible to deploy.
|
323 |
+
|
324 |
+
3. If you've selected Function, pick a completely unique (globally, not just your account) deployment serving name that will be in the endpoint url.
|
325 |
+
|
326 |
+
4. Once your are satisfied, click the deploy function button and wait for the response.
|
327 |
+
|
328 |
+
---
|
329 |
+
|
330 |
+
{hw_selection_table}
|
331 |
+
|
332 |
+
---
|
333 |
+
|
334 |
+
{deployment_definition}
|
335 |
+
|
336 |
+
---
|
337 |
+
|
338 |
+
{deploy_fnc}
|
339 |
+
|
340 |
+
''')
|
341 |
+
|
342 |
+
s5 = mo.md(f'''
|
343 |
+
###**Helper Purge Functions:**
|
344 |
+
|
345 |
+
These functions help you retrieve and mass delete ***(WARNING: purges all at once)*** deployments, data assets or repository assets (functions, models, etc.) that you have in the deployment space. This is meant to support fast cleanup.
|
346 |
+
|
347 |
+
Select the tab based on what you want to delete, then click each of the buttons one by one after the previous gives a response.
|
348 |
+
|
349 |
+
---
|
350 |
+
|
351 |
+
{purge_tabs}
|
352 |
+
|
353 |
+
''')
|
354 |
+
|
355 |
+
sections = mo.accordion(
|
356 |
+
{
|
357 |
+
"Section 1: **watsonx.ai Credentials**": s1,
|
358 |
+
"Section 2: **Function Creation**": s2,
|
359 |
+
"Section 3: **Function Upload**": s3,
|
360 |
+
"Section 4: **Function Deployment**": s4,
|
361 |
+
"Section 5: **Helper Functions**": s5,
|
362 |
+
},
|
363 |
+
multiple=True
|
364 |
+
)
|
365 |
+
|
366 |
+
sections
|
367 |
+
return s1, s2, s3, s4, s5, sc_tabs, sections
|
368 |
+
|
369 |
+
|
370 |
+
@app.cell
|
371 |
+
def _(mo, template_variant):
|
372 |
+
# Template for WatsonX.ai deployable function
|
373 |
+
if template_variant.value == "Stream Files to IBM COS [Example]":
|
374 |
+
with open("stream_files_to_cos.py", "r") as file:
|
375 |
+
template = file.read()
|
376 |
+
else:
|
377 |
+
template = '''def your_function_name():
|
378 |
+
|
379 |
+
import subprocess
|
380 |
+
subprocess.check_output('pip install gensim', shell=True)
|
381 |
+
import gensim
|
382 |
+
|
383 |
+
def score(input_data):
|
384 |
+
message_from_input_payload = payload.get("input_data")[0].get("values")[0][0]
|
385 |
+
response_message = "Received message - {0}".format(message_from_input_payload)
|
386 |
+
|
387 |
+
# Score using the pre-defined model
|
388 |
+
score_response = {
|
389 |
+
'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'],
|
390 |
+
'values': [[response_message, gensim.__version__]]
|
391 |
+
}]
|
392 |
+
}
|
393 |
+
return score_response
|
394 |
+
|
395 |
+
return score
|
396 |
+
|
397 |
+
score = your_function_name()
|
398 |
+
'''
|
399 |
+
|
400 |
+
function_editor = (
|
401 |
+
mo.md('''
|
402 |
+
#### **Create your function by editing the template:**
|
403 |
+
|
404 |
+
{editor}
|
405 |
+
|
406 |
+
''')
|
407 |
+
.batch(
|
408 |
+
editor = mo.ui.code_editor(value=template, language="python", min_height=50)
|
409 |
+
)
|
410 |
+
.form(show_clear_button=True, bordered=False)
|
411 |
+
)
|
412 |
+
|
413 |
+
# function_editor
|
414 |
+
return file, function_editor, template
|
415 |
+
|
416 |
+
|
417 |
+
@app.cell
|
418 |
+
def _(function_editor, mo, os):
|
419 |
+
if function_editor.value:
|
420 |
+
# Get the edited code from the function editor
|
421 |
+
code = function_editor.value['editor']
|
422 |
+
# Create a namespace to execute the code in
|
423 |
+
namespace = {}
|
424 |
+
# Execute the code
|
425 |
+
exec(code, namespace)
|
426 |
+
|
427 |
+
# Find the first function defined in the namespace
|
428 |
+
function_name = None
|
429 |
+
for name, obj in namespace.items():
|
430 |
+
if callable(obj) and name != "__builtins__":
|
431 |
+
function_name = name
|
432 |
+
break
|
433 |
+
|
434 |
+
if function_name:
|
435 |
+
# Instantiate the deployable function
|
436 |
+
deployable_function = namespace[function_name]
|
437 |
+
# Now deployable_function contains the score function
|
438 |
+
mo.md(f"Created deployable function from '{function_name}'")
|
439 |
+
# Create the directory if it doesn't exist
|
440 |
+
save_dir = "/tmp/notebook_functions"
|
441 |
+
os.makedirs(save_dir, exist_ok=True)
|
442 |
+
# Save the function code to a file
|
443 |
+
file_path = os.path.join(save_dir, f"{function_name}.py")
|
444 |
+
with open(file_path, "w") as f:
|
445 |
+
f.write(code)
|
446 |
+
else:
|
447 |
+
mo.md("No function found in the editor code")
|
448 |
+
return (
|
449 |
+
code,
|
450 |
+
deployable_function,
|
451 |
+
f,
|
452 |
+
file_path,
|
453 |
+
function_name,
|
454 |
+
name,
|
455 |
+
namespace,
|
456 |
+
obj,
|
457 |
+
save_dir,
|
458 |
+
)
|
459 |
+
|
460 |
+
|
461 |
+
@app.cell
|
462 |
+
def _(deployment_client, mo, pd):
|
463 |
+
if deployment_client:
|
464 |
+
supported_specs = deployment_client.software_specifications.list()[
|
465 |
+
deployment_client.software_specifications.list()['STATE'] == 'supported'
|
466 |
+
]
|
467 |
+
|
468 |
+
# Reset the index to start from 0
|
469 |
+
supported_specs = supported_specs.reset_index(drop=True)
|
470 |
+
|
471 |
+
# Create a mapping dictionary for framework names based on software specifications
|
472 |
+
framework_mapping = {
|
473 |
+
"tensorflow_rt24.1-py3.11": "TensorFlow",
|
474 |
+
"pytorch-onnx_rt24.1-py3.11": "PyTorch",
|
475 |
+
"onnxruntime_opset_19": "ONNX or ONNXRuntime",
|
476 |
+
"runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts",
|
477 |
+
"autoai-ts_rt24.1-py3.11": "AutoAI",
|
478 |
+
"autoai-kb_rt24.1-py3.11": "AutoAI",
|
479 |
+
"runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime",
|
480 |
+
"runtime-24.1-r4.3": "R Runtime 4.3",
|
481 |
+
"spark-mllib_3.4": "Apache Spark 3.4",
|
482 |
+
"autoai-rag_rt24.1-py3.11": "AutoAI RAG"
|
483 |
+
}
|
484 |
+
|
485 |
+
# Define the preferred order for items to appear at the top
|
486 |
+
preferred_order = [
|
487 |
+
"runtime-24.1-py3.11",
|
488 |
+
"runtime-24.1-py3.11-cuda",
|
489 |
+
"runtime-24.1-r4.3",
|
490 |
+
"ai-service-v5-software-specification",
|
491 |
+
"autoai-rag_rt24.1-py3.11",
|
492 |
+
"autoai-ts_rt24.1-py3.11",
|
493 |
+
"autoai-kb_rt24.1-py3.11",
|
494 |
+
"tensorflow_rt24.1-py3.11",
|
495 |
+
"pytorch-onnx_rt24.1-py3.11",
|
496 |
+
"onnxruntime_opset_19",
|
497 |
+
"spark-mllib_3.4",
|
498 |
+
]
|
499 |
+
|
500 |
+
# Create a new column for sorting
|
501 |
+
supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply(
|
502 |
+
lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order)
|
503 |
+
)
|
504 |
+
|
505 |
+
# Sort the DataFrame by the new column
|
506 |
+
supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True)
|
507 |
+
|
508 |
+
# Drop the sorting column as it's no longer needed
|
509 |
+
supported_specs = supported_specs.drop(columns=['SORT_ORDER'])
|
510 |
+
|
511 |
+
# Drop the REPLACEMENT column if it exists and add NOTES column
|
512 |
+
if 'REPLACEMENT' in supported_specs.columns:
|
513 |
+
supported_specs = supported_specs.drop(columns=['REPLACEMENT'])
|
514 |
+
|
515 |
+
# Add NOTES column with framework information
|
516 |
+
supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other")
|
517 |
+
|
518 |
+
# Create a table with single-row selection
|
519 |
+
selection_table = mo.ui.table(
|
520 |
+
supported_specs,
|
521 |
+
selection="single", # Only allow selecting one row
|
522 |
+
label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):",
|
523 |
+
initial_selection=[0], # Now selecting the first row, which should be runtime-24.1-py3.11
|
524 |
+
page_size=6
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
sel_df = pd.DataFrame(
|
528 |
+
data=[["ID", "Activate deployment_client."]],
|
529 |
+
columns=["ID", "VALUE"]
|
530 |
+
)
|
531 |
+
|
532 |
+
selection_table = mo.ui.table(
|
533 |
+
sel_df,
|
534 |
+
selection="single", # Only allow selecting one row
|
535 |
+
label="You haven't activated the Deployment_Client",
|
536 |
+
initial_selection=[0]
|
537 |
+
)
|
538 |
+
|
539 |
+
# # Display the table
|
540 |
+
# mo.md(f"""---
|
541 |
+
# <br>
|
542 |
+
# <br>
|
543 |
+
# {selection_table}
|
544 |
+
# <br>
|
545 |
+
# <br>
|
546 |
+
# ---
|
547 |
+
# <br>
|
548 |
+
# <br>
|
549 |
+
# """)
|
550 |
+
return (
|
551 |
+
framework_mapping,
|
552 |
+
preferred_order,
|
553 |
+
sel_df,
|
554 |
+
selection_table,
|
555 |
+
supported_specs,
|
556 |
+
)
|
557 |
+
|
558 |
+
|
559 |
+
@app.cell
|
560 |
+
def _(mo):
|
561 |
+
input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)")
|
562 |
+
output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)")
|
563 |
+
sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)")
|
564 |
+
return input_schema_checkbox, output_schema_checkbox, sample_input_checkbox
|
565 |
+
|
566 |
+
|
567 |
+
@app.cell
|
568 |
+
def _(
|
569 |
+
input_schema_checkbox,
|
570 |
+
mo,
|
571 |
+
output_schema_checkbox,
|
572 |
+
sample_input_checkbox,
|
573 |
+
selection_table,
|
574 |
+
template_variant,
|
575 |
+
):
|
576 |
+
if selection_table.value['ID'].iloc[0]:
|
577 |
+
# Create the input fields
|
578 |
+
if template_variant.value == "Stream Files to IBM COS [Example]":
|
579 |
+
fnc_nm = "stream_file_to_cos"
|
580 |
+
else:
|
581 |
+
fnc_nm = "your_function_name"
|
582 |
+
|
583 |
+
uploaded_function_name = mo.ui.text(placeholder="<Must be the same as the name in editor>", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False)
|
584 |
+
tags_editor = mo.ui.array(
|
585 |
+
[mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()],
|
586 |
+
label="Optional Metadata Tags"
|
587 |
+
)
|
588 |
+
software_spec = selection_table.value['ID'].iloc[0]
|
589 |
+
|
590 |
+
description_input = mo.ui.text_area(
|
591 |
+
placeholder="Write a description for your function...)",
|
592 |
+
label="Description",
|
593 |
+
max_length=256,
|
594 |
+
rows=5,
|
595 |
+
full_width=True
|
596 |
+
)
|
597 |
+
|
598 |
+
|
599 |
+
func_metadata=mo.hstack([
|
600 |
+
description_input,
|
601 |
+
mo.hstack([
|
602 |
+
uploaded_function_name,
|
603 |
+
tags_editor,
|
604 |
+
], justify="start", gap=1, align="start", wrap=True)
|
605 |
+
],
|
606 |
+
widths=[0.6,0.4],
|
607 |
+
gap=2.75
|
608 |
+
)
|
609 |
+
|
610 |
+
schema_metadata=mo.hstack([
|
611 |
+
input_schema_checkbox,
|
612 |
+
output_schema_checkbox,
|
613 |
+
sample_input_checkbox
|
614 |
+
],
|
615 |
+
justify="center", gap=1, align="center", wrap=True
|
616 |
+
)
|
617 |
+
|
618 |
+
# Display the metadata inputs
|
619 |
+
# mo.vstack([
|
620 |
+
# func_metadata,
|
621 |
+
# mo.md("**Make sure to click the checkboxes before filling in descriptions and tags or they will reset.**"),
|
622 |
+
# schema_metadata
|
623 |
+
# ],
|
624 |
+
# align="center",
|
625 |
+
# gap=2
|
626 |
+
# )
|
627 |
+
fm = mo.vstack([
|
628 |
+
func_metadata,
|
629 |
+
],
|
630 |
+
align="center",
|
631 |
+
gap=2
|
632 |
+
)
|
633 |
+
sc_m = mo.vstack([
|
634 |
+
schema_metadata,
|
635 |
+
mo.md("**Make sure to select the checkbox options before filling in descriptions and tags or they will reset.**")
|
636 |
+
],
|
637 |
+
align="center",
|
638 |
+
gap=2
|
639 |
+
)
|
640 |
+
return (
|
641 |
+
description_input,
|
642 |
+
fm,
|
643 |
+
fnc_nm,
|
644 |
+
func_metadata,
|
645 |
+
sc_m,
|
646 |
+
schema_metadata,
|
647 |
+
software_spec,
|
648 |
+
tags_editor,
|
649 |
+
uploaded_function_name,
|
650 |
+
)
|
651 |
+
|
652 |
+
|
653 |
+
@app.cell
|
654 |
+
def _(json, mo, template_variant):
|
655 |
+
if template_variant.value == "Stream Files to IBM COS [Example]":
|
656 |
+
from cos_stream_schema_examples import input_schema, output_schema, sample_input
|
657 |
+
else:
|
658 |
+
input_schema = [
|
659 |
+
{
|
660 |
+
'id': '1',
|
661 |
+
'type': 'struct',
|
662 |
+
'fields': [
|
663 |
+
{
|
664 |
+
'name': '<variable name 1>',
|
665 |
+
'type': 'string',
|
666 |
+
'nullable': False,
|
667 |
+
'metadata': {}
|
668 |
+
},
|
669 |
+
{
|
670 |
+
'name': '<variable name 2>',
|
671 |
+
'type': 'string',
|
672 |
+
'nullable': False,
|
673 |
+
'metadata': {}
|
674 |
+
}
|
675 |
+
]
|
676 |
+
}
|
677 |
+
]
|
678 |
+
|
679 |
+
output_schema = [
|
680 |
+
{
|
681 |
+
'id': '1',
|
682 |
+
'type': 'struct',
|
683 |
+
'fields': [
|
684 |
+
{
|
685 |
+
'name': '<output return name>',
|
686 |
+
'type': 'string',
|
687 |
+
'nullable': False,
|
688 |
+
'metadata': {}
|
689 |
+
}
|
690 |
+
]
|
691 |
+
}
|
692 |
+
]
|
693 |
+
|
694 |
+
sample_input = {
|
695 |
+
'input_data': [
|
696 |
+
{
|
697 |
+
'fields': ['<variable name 1>', '<variable name 2>'],
|
698 |
+
'values': [
|
699 |
+
['<sample input value for variable 1>', '<sample input value for variable 2>']
|
700 |
+
]
|
701 |
+
}
|
702 |
+
]
|
703 |
+
}
|
704 |
+
|
705 |
+
|
706 |
+
input_schema_editor = mo.ui.code_editor(value=json.dumps(input_schema, indent=4), language="python", min_height=25)
|
707 |
+
output_schema_editor = mo.ui.code_editor(value=json.dumps(output_schema, indent=4), language="python", min_height=25)
|
708 |
+
sample_input_editor = mo.ui.code_editor(value=json.dumps(sample_input, indent=4), language="python", min_height=25)
|
709 |
+
|
710 |
+
schema_editors = mo.accordion(
|
711 |
+
{
|
712 |
+
"""**Input Schema Metadata Editor**""": input_schema_editor,
|
713 |
+
"""**Output Schema Metadata Editor**""": output_schema_editor,
|
714 |
+
"""**Sample Input Metadata Editor**""": sample_input_editor
|
715 |
+
}, multiple=True
|
716 |
+
)
|
717 |
+
|
718 |
+
# schema_editors
|
719 |
+
return (
|
720 |
+
input_schema,
|
721 |
+
input_schema_editor,
|
722 |
+
output_schema,
|
723 |
+
output_schema_editor,
|
724 |
+
sample_input,
|
725 |
+
sample_input_editor,
|
726 |
+
schema_editors,
|
727 |
+
)
|
728 |
+
|
729 |
+
|
730 |
+
@app.cell
|
731 |
+
def _(
|
732 |
+
ast,
|
733 |
+
deployment_client,
|
734 |
+
description_input,
|
735 |
+
function_editor,
|
736 |
+
input_schema_checkbox,
|
737 |
+
input_schema_editor,
|
738 |
+
json,
|
739 |
+
mo,
|
740 |
+
os,
|
741 |
+
output_schema_checkbox,
|
742 |
+
output_schema_editor,
|
743 |
+
sample_input_checkbox,
|
744 |
+
sample_input_editor,
|
745 |
+
selection_table,
|
746 |
+
software_spec,
|
747 |
+
tags_editor,
|
748 |
+
uploaded_function_name,
|
749 |
+
):
|
750 |
+
get_upload_status, set_upload_status = mo.state("No uploads yet")
|
751 |
+
|
752 |
+
function_meta = {}
|
753 |
+
|
754 |
+
if selection_table.value['ID'].iloc[0] and deployment_client is not None:
|
755 |
+
# Start with the base required fields
|
756 |
+
function_meta = {
|
757 |
+
deployment_client.repository.FunctionMetaNames.NAME: f"{uploaded_function_name.value}" or "your_function_name",
|
758 |
+
deployment_client.repository.FunctionMetaNames.SOFTWARE_SPEC_ID: software_spec or "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
|
759 |
+
}
|
760 |
+
|
761 |
+
# Add optional fields if they exist
|
762 |
+
if tags_editor.value:
|
763 |
+
# Filter out empty strings from the tags list
|
764 |
+
filtered_tags = [tag for tag in tags_editor.value if tag and tag.strip()]
|
765 |
+
if filtered_tags: # Only add if there are non-empty tags
|
766 |
+
function_meta[deployment_client.repository.FunctionMetaNames.TAGS] = filtered_tags
|
767 |
+
|
768 |
+
|
769 |
+
if description_input.value:
|
770 |
+
function_meta[deployment_client.repository.FunctionMetaNames.DESCRIPTION] = description_input.value
|
771 |
+
|
772 |
+
# Add input schema if checkbox is checked
|
773 |
+
if input_schema_checkbox.value:
|
774 |
+
try:
|
775 |
+
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = json.loads(input_schema_editor.value)
|
776 |
+
except json.JSONDecodeError:
|
777 |
+
# If JSON parsing fails, try Python literal evaluation as fallback
|
778 |
+
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = ast.literal_eval(input_schema_editor.value)
|
779 |
+
|
780 |
+
# Add output schema if checkbox is checked
|
781 |
+
if output_schema_checkbox.value:
|
782 |
+
try:
|
783 |
+
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = json.loads(output_schema_editor.value)
|
784 |
+
except json.JSONDecodeError:
|
785 |
+
# If JSON parsing fails, try Python literal evaluation as fallback
|
786 |
+
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = ast.literal_eval(output_schema_editor.value)
|
787 |
+
|
788 |
+
# Add sample input if checkbox is checked
|
789 |
+
if sample_input_checkbox.value:
|
790 |
+
try:
|
791 |
+
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = json.loads(sample_input_editor.value)
|
792 |
+
except json.JSONDecodeError:
|
793 |
+
# If JSON parsing fails, try Python literal evaluation as fallback
|
794 |
+
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = ast.literal_eval(sample_input_editor.value)
|
795 |
+
|
796 |
+
def upload_function(function_meta, use_function_object=True):
|
797 |
+
"""
|
798 |
+
Uploads a Python function to watsonx.ai as a deployable asset.
|
799 |
+
Parameters:
|
800 |
+
function_meta (dict): Metadata for the function
|
801 |
+
use_function_object (bool): Whether to use function object (True) or file path (False)
|
802 |
+
Returns:
|
803 |
+
dict: Details of the uploaded function
|
804 |
+
"""
|
805 |
+
# Store the original working directory
|
806 |
+
original_dir = os.getcwd()
|
807 |
+
|
808 |
+
try:
|
809 |
+
# Create temp file from the code in the editor
|
810 |
+
code_to_deploy = function_editor.value['editor']
|
811 |
+
# This function is defined elsewhere in the notebook
|
812 |
+
func_name = uploaded_function_name.value or "your_function_name"
|
813 |
+
# Ensure function_meta has the correct function name
|
814 |
+
function_meta[deployment_client.repository.FunctionMetaNames.NAME] = func_name
|
815 |
+
# Save the file locally first
|
816 |
+
save_dir = "/tmp/notebook_functions"
|
817 |
+
os.makedirs(save_dir, exist_ok=True)
|
818 |
+
file_path = f"{save_dir}/{func_name}.py"
|
819 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
820 |
+
f.write(code_to_deploy)
|
821 |
+
|
822 |
+
if use_function_object:
|
823 |
+
# Import the function from the file
|
824 |
+
import sys
|
825 |
+
import importlib.util
|
826 |
+
# Add the directory to Python's path
|
827 |
+
sys.path.append(save_dir)
|
828 |
+
# Import the module
|
829 |
+
spec = importlib.util.spec_from_file_location(func_name, file_path)
|
830 |
+
module = importlib.util.module_from_spec(spec)
|
831 |
+
spec.loader.exec_module(module)
|
832 |
+
# Get the function object
|
833 |
+
function_object = getattr(module, func_name)
|
834 |
+
|
835 |
+
# Change to /tmp directory before calling IBM Watson SDK functions
|
836 |
+
os.chdir('/tmp')
|
837 |
+
|
838 |
+
# Upload the function object
|
839 |
+
mo.md(f"Uploading function object: {func_name}")
|
840 |
+
func_details = deployment_client.repository.store_function(function_object, function_meta)
|
841 |
+
else:
|
842 |
+
# Change to /tmp directory before calling IBM Watson SDK functions
|
843 |
+
os.chdir('/tmp')
|
844 |
+
|
845 |
+
# Upload using the file path approach
|
846 |
+
mo.md(f"Uploading function from file: {file_path}")
|
847 |
+
func_details = deployment_client.repository.store_function(file_path, function_meta)
|
848 |
+
|
849 |
+
set_upload_status(f"Latest Upload - id - {func_details['metadata']['id']}")
|
850 |
+
return func_details
|
851 |
+
except Exception as e:
|
852 |
+
set_upload_status(f"Error uploading function: {str(e)}")
|
853 |
+
mo.md(f"Detailed error: {str(e)}")
|
854 |
+
raise
|
855 |
+
finally:
|
856 |
+
# Always change back to the original directory, even if an exception occurs
|
857 |
+
os.chdir(original_dir)
|
858 |
+
|
859 |
+
upload_status = mo.state("No uploads yet")
|
860 |
+
|
861 |
+
upload_button = mo.ui.button(
|
862 |
+
label="Upload Function",
|
863 |
+
on_click=lambda _: upload_function(function_meta, use_function_object=True),
|
864 |
+
kind="success",
|
865 |
+
tooltip="Click to upload function to watsonx.ai"
|
866 |
+
)
|
867 |
+
|
868 |
+
# function_meta
|
869 |
+
return (
|
870 |
+
filtered_tags,
|
871 |
+
function_meta,
|
872 |
+
get_upload_status,
|
873 |
+
set_upload_status,
|
874 |
+
upload_button,
|
875 |
+
upload_function,
|
876 |
+
upload_status,
|
877 |
+
)
|
878 |
+
|
879 |
+
|
880 |
+
@app.cell
|
881 |
+
def _(get_upload_status, mo, upload_button):
|
882 |
+
# Upload your function
|
883 |
+
if upload_button.value:
|
884 |
+
try:
|
885 |
+
upload_result = upload_button.value
|
886 |
+
artifact_id = upload_result['metadata']['id']
|
887 |
+
except Exception as e:
|
888 |
+
mo.md(f"Error: {str(e)}")
|
889 |
+
|
890 |
+
upload_func = mo.vstack([
|
891 |
+
upload_button,
|
892 |
+
mo.md(f"**Status:** {get_upload_status()}")
|
893 |
+
], justify="space-around", align="center")
|
894 |
+
return artifact_id, upload_func, upload_result
|
895 |
+
|
896 |
+
|
897 |
+
@app.cell
|
898 |
+
def _(deployment_client, mo, pd, upload_button, uuid):
|
899 |
+
def reorder_hardware_specifications(df):
|
900 |
+
"""
|
901 |
+
Reorders a hardware specifications dataframe by type and size of environment
|
902 |
+
without hardcoding specific hardware types.
|
903 |
+
|
904 |
+
Parameters:
|
905 |
+
df (pandas.DataFrame): The hardware specifications dataframe to reorder
|
906 |
+
|
907 |
+
Returns:
|
908 |
+
pandas.DataFrame: Reordered dataframe with reset index
|
909 |
+
"""
|
910 |
+
# Create a copy to avoid modifying the original dataframe
|
911 |
+
result_df = df.copy()
|
912 |
+
|
913 |
+
# Define a function to extract the base type and size
|
914 |
+
def get_sort_key(name):
|
915 |
+
# Create a custom ordering list
|
916 |
+
custom_order = [
|
917 |
+
"XXS", "XS", "S", "M", "L", "XL",
|
918 |
+
"XS-Spark", "S-Spark", "M-Spark", "L-Spark", "XL-Spark",
|
919 |
+
"K80", "K80x2", "K80x4",
|
920 |
+
"V100", "V100x2",
|
921 |
+
"WXaaS-XS", "WXaaS-S", "WXaaS-M", "WXaaS-L", "WXaaS-XL",
|
922 |
+
"Default Spark", "Notebook Default Spark", "ML"
|
923 |
+
]
|
924 |
+
|
925 |
+
# If name is in the custom order list, use its index
|
926 |
+
if name in custom_order:
|
927 |
+
return (0, custom_order.index(name))
|
928 |
+
|
929 |
+
# For any name not in the custom order, put it at the end
|
930 |
+
return (1, name)
|
931 |
+
|
932 |
+
# Add a temporary column for sorting
|
933 |
+
result_df['sort_key'] = result_df['NAME'].apply(get_sort_key)
|
934 |
+
|
935 |
+
# Sort the dataframe and drop the temporary column
|
936 |
+
result_df = result_df.sort_values('sort_key').drop('sort_key', axis=1)
|
937 |
+
|
938 |
+
# Reset the index
|
939 |
+
result_df = result_df.reset_index(drop=True)
|
940 |
+
|
941 |
+
return result_df
|
942 |
+
|
943 |
+
if deployment_client and upload_button.value:
|
944 |
+
|
945 |
+
hardware_specs = deployment_client.hardware_specifications.list()
|
946 |
+
hardware_specs_df = reorder_hardware_specifications(hardware_specs)
|
947 |
+
|
948 |
+
# Create a table with single-row selection
|
949 |
+
hw_selection_table = mo.ui.table(
|
950 |
+
hardware_specs_df,
|
951 |
+
selection="single", # Only allow selecting one row
|
952 |
+
label="#### **Select a supported hardware_specification for your deployment** *(Default: 'XS' - 1vCPU_4GB Ram)*",
|
953 |
+
initial_selection=[1],
|
954 |
+
page_size=6,
|
955 |
+
wrapped_columns=['DESCRIPTION']
|
956 |
+
)
|
957 |
+
|
958 |
+
deployment_type = mo.ui.radio(
|
959 |
+
options={"Function":"Online (Function Endpoint)","Runnable Job":"Batch (Runnable Jobs)"}, value="Function", label="Select the Type of Deployment:", inline=True
|
960 |
+
)
|
961 |
+
uuid_suffix = str(uuid.uuid4())[:4]
|
962 |
+
|
963 |
+
deployment_name = mo.ui.text(value=f"deployed_func_{uuid_suffix}", label="Deployment Name:", placeholder="<Must be completely unique>")
|
964 |
+
else:
|
965 |
+
hw_df = pd.DataFrame(
|
966 |
+
data=[["ID", "Activate deployment_client."]],
|
967 |
+
columns=["ID", "VALUE"]
|
968 |
+
)
|
969 |
+
|
970 |
+
hw_selection_table = mo.ui.table(
|
971 |
+
hw_df,
|
972 |
+
selection="single", # Only allow selecting one row
|
973 |
+
label="You haven't activated the Deployment_Client",
|
974 |
+
initial_selection=[0]
|
975 |
+
)
|
976 |
+
|
977 |
+
|
978 |
+
# mo.md(f"""
|
979 |
+
# <br>
|
980 |
+
# <br>
|
981 |
+
# {upload_func}
|
982 |
+
# <br>
|
983 |
+
# <br>
|
984 |
+
# ---
|
985 |
+
# {hw_selection_table}
|
986 |
+
# <br>
|
987 |
+
# <br>
|
988 |
+
|
989 |
+
|
990 |
+
# """)
|
991 |
+
return (
|
992 |
+
deployment_name,
|
993 |
+
deployment_type,
|
994 |
+
hardware_specs,
|
995 |
+
hardware_specs_df,
|
996 |
+
hw_df,
|
997 |
+
hw_selection_table,
|
998 |
+
reorder_hardware_specifications,
|
999 |
+
uuid_suffix,
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
|
1003 |
+
@app.cell
|
1004 |
+
def _(
|
1005 |
+
artifact_id,
|
1006 |
+
deployment_client,
|
1007 |
+
deployment_details,
|
1008 |
+
deployment_name,
|
1009 |
+
deployment_type,
|
1010 |
+
hw_selection_table,
|
1011 |
+
mo,
|
1012 |
+
print,
|
1013 |
+
upload_button,
|
1014 |
+
):
|
1015 |
+
def deploy_function(artifact_id, deployment_type):
|
1016 |
+
"""
|
1017 |
+
Deploys a function asset to watsonx.ai.
|
1018 |
+
|
1019 |
+
Parameters:
|
1020 |
+
artifact_id (str): ID of the function artifact to deploy
|
1021 |
+
deployment_type (object): Type of deployment (online or batch)
|
1022 |
+
|
1023 |
+
Returns:
|
1024 |
+
dict: Details of the deployed function
|
1025 |
+
"""
|
1026 |
+
if not artifact_id:
|
1027 |
+
print("Error: No artifact ID provided. Please upload a function first.")
|
1028 |
+
return None
|
1029 |
+
|
1030 |
+
if deployment_type.value == "Online (Function Endpoint)": # Changed from "Online (Function Endpoint)"
|
1031 |
+
deployment_props = {
|
1032 |
+
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
|
1033 |
+
deployment_client.deployments.ConfigurationMetaNames.ONLINE: {},
|
1034 |
+
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
|
1035 |
+
deployment_client.deployments.ConfigurationMetaNames.SERVING_NAME: deployment_name.value,
|
1036 |
+
}
|
1037 |
+
else: # "Runnable Job" instead of "Batch (Runnable Jobs)"
|
1038 |
+
deployment_props = {
|
1039 |
+
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
|
1040 |
+
deployment_client.deployments.ConfigurationMetaNames.BATCH: {},
|
1041 |
+
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
|
1042 |
+
# batch does not use serving names
|
1043 |
+
}
|
1044 |
+
|
1045 |
+
try:
|
1046 |
+
print(deployment_props)
|
1047 |
+
# First, get the asset details to confirm it exists
|
1048 |
+
asset_details = deployment_client.repository.get_details(artifact_id)
|
1049 |
+
print(f"Asset found: {asset_details['metadata']['name']} with ID: {asset_details['metadata']['id']}")
|
1050 |
+
|
1051 |
+
# Create the deployment
|
1052 |
+
deployed_function = deployment_client.deployments.create(artifact_id, deployment_props)
|
1053 |
+
print(f"Creating deployment from Asset: {artifact_id} with deployment properties {str(deployment_props)}")
|
1054 |
+
return deployed_function
|
1055 |
+
except Exception as e:
|
1056 |
+
print(f"Deployment error: {str(e)}")
|
1057 |
+
return None
|
1058 |
+
|
1059 |
+
def get_deployment_id(deployed_function):
|
1060 |
+
deployment_id = deployment_client.deployments.get_uid(deployment_details)
|
1061 |
+
return deployment_id
|
1062 |
+
|
1063 |
+
def get_deployment_info(deployment_id):
|
1064 |
+
deployment_info = deployment_client.deployments.get_details(deployment_id)
|
1065 |
+
return deployment_info
|
1066 |
+
|
1067 |
+
deployment_status = mo.state("No deployments yet")
|
1068 |
+
|
1069 |
+
if hw_selection_table.value['ID'].iloc[0]:
|
1070 |
+
selected_hw_config = hw_selection_table.value['ID'].iloc[0]
|
1071 |
+
|
1072 |
+
deploy_button = mo.ui.button(
|
1073 |
+
label="Deploy Function",
|
1074 |
+
on_click=lambda _: deploy_function(artifact_id, deployment_type),
|
1075 |
+
kind="success",
|
1076 |
+
tooltip="Click to deploy function to watsonx.ai"
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
if deployment_client and upload_button.value:
|
1080 |
+
deployment_definition = mo.hstack([
|
1081 |
+
deployment_type,
|
1082 |
+
deployment_name
|
1083 |
+
], justify="space-around")
|
1084 |
+
else:
|
1085 |
+
deployment_definition = mo.hstack([
|
1086 |
+
"No Deployment Type Selected",
|
1087 |
+
"No Deployment Name Provided"
|
1088 |
+
], justify="space-around")
|
1089 |
+
|
1090 |
+
# deployment_definition
|
1091 |
+
return (
|
1092 |
+
deploy_button,
|
1093 |
+
deploy_function,
|
1094 |
+
deployment_definition,
|
1095 |
+
deployment_status,
|
1096 |
+
get_deployment_id,
|
1097 |
+
get_deployment_info,
|
1098 |
+
selected_hw_config,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
@app.cell
|
1103 |
+
def _(deploy_button, deployment_definition, mo):
|
1104 |
+
_ = deployment_definition
|
1105 |
+
|
1106 |
+
deploy_fnc = mo.vstack([
|
1107 |
+
deploy_button,
|
1108 |
+
deploy_button.value
|
1109 |
+
], justify="space-around", align="center")
|
1110 |
+
|
1111 |
+
# mo.md(f"""
|
1112 |
+
# {deployment_definition}
|
1113 |
+
# <br>
|
1114 |
+
# <br>
|
1115 |
+
# {deploy_fnc}
|
1116 |
+
|
1117 |
+
# ---
|
1118 |
+
# """)
|
1119 |
+
return (deploy_fnc,)
|
1120 |
+
|
1121 |
+
|
1122 |
+
@app.cell(hide_code=True)
|
1123 |
+
def _(deployment_client, mo):
|
1124 |
+
### Functions to List , Get ID's as a list and Purge of Assets
|
1125 |
+
|
1126 |
+
def get_deployment_list():
|
1127 |
+
dep_df = deployment_client.deployments.list()
|
1128 |
+
dep_df_processed = pd.DataFrame(dep_df)
|
1129 |
+
deployment_df = mo.ui.table(dep_df_processed, initial_selection=[0])
|
1130 |
+
return deployment_df
|
1131 |
+
|
1132 |
+
def get_deployment_ids(df):
|
1133 |
+
dep_list = df['ID'].tolist()
|
1134 |
+
return dep_list
|
1135 |
+
|
1136 |
+
#----
|
1137 |
+
|
1138 |
+
def get_data_assets_list():
|
1139 |
+
data_a_df = deployment_client.data_assets.list()
|
1140 |
+
data_a_df_processed = pd.DataFrame(data_a_df)
|
1141 |
+
data_assets_df = mo.ui.table(data_a_df_processed, initial_selection=[0])
|
1142 |
+
return data_assets_df
|
1143 |
+
|
1144 |
+
def get_data_asset_ids(df):
|
1145 |
+
data_asset_list = df['ASSET_ID'].tolist()
|
1146 |
+
return data_asset_list
|
1147 |
+
|
1148 |
+
#----
|
1149 |
+
|
1150 |
+
def get_repository_list():
|
1151 |
+
rep_list_df = deployment_client.repository.list()
|
1152 |
+
rep_list_df_processed = pd.DataFrame(rep_list_df)
|
1153 |
+
repository_df = mo.ui.table(rep_list_df_processed, initial_selection=[0])
|
1154 |
+
return repository_df
|
1155 |
+
|
1156 |
+
def get_repository_ids(df):
|
1157 |
+
repository_list = df['ID'].tolist()
|
1158 |
+
return repository_list
|
1159 |
+
|
1160 |
+
#----
|
1161 |
+
|
1162 |
+
def delete_with_progress(ids_list, delete_function, item_type="items"):
|
1163 |
+
"""
|
1164 |
+
Generic wrapper that adds a progress bar to any deletion function
|
1165 |
+
|
1166 |
+
Parameters:
|
1167 |
+
ids_list: List of IDs to delete
|
1168 |
+
delete_function: Function that deletes a single ID
|
1169 |
+
item_type: String describing what's being deleted (for display)
|
1170 |
+
"""
|
1171 |
+
with mo.status.progress_bar(
|
1172 |
+
total=len(ids_list) or 1,
|
1173 |
+
title=f"Purging {item_type}",
|
1174 |
+
subtitle=f"Deleting {item_type}...",
|
1175 |
+
completion_title="Purge Complete",
|
1176 |
+
completion_subtitle=f"Successfully deleted {len(ids_list)} {item_type}"
|
1177 |
+
) as progress:
|
1178 |
+
for item_id in ids_list:
|
1179 |
+
delete_function(item_id)
|
1180 |
+
progress.update(increment=1)
|
1181 |
+
return f"Deleted {len(ids_list)} {item_type} successfully"
|
1182 |
+
|
1183 |
+
# Use with existing deletion functions
|
1184 |
+
def delete_deployments(deployment_ids):
|
1185 |
+
return delete_with_progress(
|
1186 |
+
deployment_ids,
|
1187 |
+
lambda id: deployment_client.deployments.delete(id),
|
1188 |
+
"deployments"
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
def delete_data_assets(data_asset_ids):
|
1192 |
+
return delete_with_progress(
|
1193 |
+
data_asset_ids,
|
1194 |
+
lambda id: deployment_client.data_assets.delete(id),
|
1195 |
+
"data assets"
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
def delete_repository_items(repository_ids):
|
1199 |
+
return delete_with_progress(
|
1200 |
+
repository_ids,
|
1201 |
+
lambda id: deployment_client.repository.delete(id),
|
1202 |
+
"repository items"
|
1203 |
+
)
|
1204 |
+
return (
|
1205 |
+
delete_data_assets,
|
1206 |
+
delete_deployments,
|
1207 |
+
delete_repository_items,
|
1208 |
+
delete_with_progress,
|
1209 |
+
get_data_asset_ids,
|
1210 |
+
get_data_assets_list,
|
1211 |
+
get_deployment_ids,
|
1212 |
+
get_deployment_list,
|
1213 |
+
get_repository_ids,
|
1214 |
+
get_repository_list,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
|
1218 |
+
@app.cell
|
1219 |
+
def _(get_deployment_id_list, get_deployments_button, mo, purge_deployments):
|
1220 |
+
deployments_purge_stack = mo.hstack([get_deployments_button, get_deployment_id_list, purge_deployments])
|
1221 |
+
deployments_purge_stack_results = mo.vstack([get_deployments_button.value, get_deployment_id_list.value, purge_deployments.value])
|
1222 |
+
|
1223 |
+
deployments_purge_tab = mo.vstack([deployments_purge_stack, deployments_purge_stack_results])
|
1224 |
+
return (
|
1225 |
+
deployments_purge_stack,
|
1226 |
+
deployments_purge_stack_results,
|
1227 |
+
deployments_purge_tab,
|
1228 |
+
)
|
1229 |
+
|
1230 |
+
|
1231 |
+
@app.cell
|
1232 |
+
def _(get_repository_button, get_repository_id_list, mo, purge_repository):
|
1233 |
+
repository_purge_stack = mo.hstack([get_repository_button, get_repository_id_list, purge_repository])
|
1234 |
+
|
1235 |
+
repository_purge_stack_results = mo.vstack([get_repository_button.value, get_repository_id_list.value, purge_repository.value])
|
1236 |
+
|
1237 |
+
repository_purge_tab = mo.vstack([repository_purge_stack, repository_purge_stack_results])
|
1238 |
+
return (
|
1239 |
+
repository_purge_stack,
|
1240 |
+
repository_purge_stack_results,
|
1241 |
+
repository_purge_tab,
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
|
1245 |
+
@app.cell
|
1246 |
+
def _(get_data_asset_id_list, get_data_assets_button, mo, purge_data_assets):
|
1247 |
+
data_assets_purge_stack = mo.hstack([get_data_assets_button, get_data_asset_id_list, purge_data_assets])
|
1248 |
+
data_assets_purge_stack_results = mo.vstack([get_data_assets_button.value, get_data_asset_id_list.value, purge_data_assets.value])
|
1249 |
+
|
1250 |
+
data_assets_purge_tab = mo.vstack([data_assets_purge_stack, data_assets_purge_stack_results])
|
1251 |
+
return (
|
1252 |
+
data_assets_purge_stack,
|
1253 |
+
data_assets_purge_stack_results,
|
1254 |
+
data_assets_purge_tab,
|
1255 |
+
)
|
1256 |
+
|
1257 |
+
|
1258 |
+
@app.cell
|
1259 |
+
def _(data_assets_purge_tab, deployments_purge_tab, mo, repository_purge_tab):
|
1260 |
+
purge_tabs = mo.ui.tabs(
|
1261 |
+
{"Purge Deployments": deployments_purge_tab, "Purge Repository Assets": repository_purge_tab,"Purge Data Assets": data_assets_purge_tab }, lazy=False
|
1262 |
+
)
|
1263 |
+
|
1264 |
+
# asset_purge = mo.accordion(
|
1265 |
+
# {
|
1266 |
+
# """<br>
|
1267 |
+
# #### **Supporting Cleanup Functionality, lists of different assets and purge them if needed** *(purges all detected)*
|
1268 |
+
# <br>""": purge_tabs,
|
1269 |
+
# }
|
1270 |
+
# )
|
1271 |
+
|
1272 |
+
# asset_purge
|
1273 |
+
return (purge_tabs,)
|
1274 |
+
|
1275 |
+
|
1276 |
+
@app.cell(hide_code=True)
|
1277 |
+
def _(
|
1278 |
+
delete_data_assets,
|
1279 |
+
delete_deployments,
|
1280 |
+
delete_repository_items,
|
1281 |
+
get_data_asset_ids,
|
1282 |
+
get_data_assets_list,
|
1283 |
+
get_deployment_ids,
|
1284 |
+
get_deployment_list,
|
1285 |
+
get_repository_ids,
|
1286 |
+
get_repository_list,
|
1287 |
+
mo,
|
1288 |
+
):
|
1289 |
+
### Temporary Function Purge - Assets
|
1290 |
+
get_data_assets_button = mo.ui.button(
|
1291 |
+
label="Get Data Assets Dataframe",
|
1292 |
+
on_click=lambda _: get_data_assets_list(),
|
1293 |
+
kind="neutral",
|
1294 |
+
)
|
1295 |
+
|
1296 |
+
get_data_asset_id_list = mo.ui.button(
|
1297 |
+
label="Turn Dataframe into List of IDs",
|
1298 |
+
on_click=lambda _: get_data_asset_ids(get_data_assets_button.value),
|
1299 |
+
kind="neutral",
|
1300 |
+
)
|
1301 |
+
|
1302 |
+
purge_data_assets = mo.ui.button(
|
1303 |
+
label="Purge Data Assets",
|
1304 |
+
on_click=lambda _: delete_data_assets(get_data_asset_id_list.value),
|
1305 |
+
kind="danger",
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
### Temporary Function Purge - Deployments
|
1309 |
+
get_deployments_button = mo.ui.button(
|
1310 |
+
label="Get Deployments Dataframe",
|
1311 |
+
on_click=lambda _: get_deployment_list(),
|
1312 |
+
kind="neutral",
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
get_deployment_id_list = mo.ui.button(
|
1316 |
+
label="Turn Dataframe into List of IDs",
|
1317 |
+
on_click=lambda _: get_deployment_ids(get_deployments_button.value),
|
1318 |
+
kind="neutral",
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
purge_deployments = mo.ui.button(
|
1322 |
+
label="Purge Deployments",
|
1323 |
+
on_click=lambda _: delete_deployments(get_deployment_id_list.value),
|
1324 |
+
kind="danger",
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
### Repository Items Purge
|
1328 |
+
get_repository_button = mo.ui.button(
|
1329 |
+
label="Get Repository Dataframe",
|
1330 |
+
on_click=lambda _: get_repository_list(),
|
1331 |
+
kind="neutral",
|
1332 |
+
)
|
1333 |
+
|
1334 |
+
get_repository_id_list = mo.ui.button(
|
1335 |
+
label="Turn Dataframe into List of IDs",
|
1336 |
+
on_click=lambda _: get_repository_ids(get_repository_button.value),
|
1337 |
+
kind="neutral",
|
1338 |
+
)
|
1339 |
+
|
1340 |
+
purge_repository = mo.ui.button(
|
1341 |
+
label="Purge Repository Items",
|
1342 |
+
on_click=lambda _: delete_repository_items(get_repository_id_list.value),
|
1343 |
+
kind="danger",
|
1344 |
+
)
|
1345 |
+
return (
|
1346 |
+
get_data_asset_id_list,
|
1347 |
+
get_data_assets_button,
|
1348 |
+
get_deployment_id_list,
|
1349 |
+
get_deployments_button,
|
1350 |
+
get_repository_button,
|
1351 |
+
get_repository_id_list,
|
1352 |
+
purge_data_assets,
|
1353 |
+
purge_deployments,
|
1354 |
+
purge_repository,
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
|
1358 |
+
if __name__ == "__main__":
|
1359 |
+
app.run()
|