Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
def display_table(exam_type): | |
if exam_type == "Armenian Exams": | |
df = pd.read_csv('unified_exam_results.csv') | |
df = df.sort_values(by='Average', ascending=False) | |
cols = df.columns.tolist() | |
cols.insert(1, cols.pop(cols.index('Average'))) | |
df = df[cols] | |
df.rename(columns={'Armenian language and literature': 'Armenian language\nand literature'}, inplace=True) | |
df = df.round(4) | |
elif exam_type == "MMLU-Pro-Hy": | |
df = pd.read_csv('mmlu_pro_hy_results.csv') | |
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology'] | |
df['Average'] = df[subject_cols].mean(axis=1) | |
df = df.sort_values(by='Average', ascending=False) | |
cols = df.columns.tolist() | |
cols.remove('Accuracy') | |
cols.insert(1, cols.pop(cols.index('Average'))) | |
cols.append(cols.pop(cols.index('Other'))) | |
df = df[cols] | |
df = df.round(4) | |
return df | |
def create_bar_chart(exam_type, plot_column): | |
if exam_type == "Armenian Exams": | |
df = pd.read_csv('unified_exam_results.csv') | |
df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True) | |
x_col = plot_column | |
title = f'{plot_column}' | |
x_range_max = 20 | |
def get_label(score): | |
if score < 8: | |
return "Fail" | |
elif 8 <= score <= 18: | |
return "Pass" | |
else: | |
return "Distinction" | |
df['Test Result'] = df[plot_column].apply(get_label) | |
color_discrete_map = { | |
"Fail": "#ff5f56", | |
"Pass": "#ffbd2e", | |
"Distinction": "#27c93f" | |
} | |
fig = px.bar(df, | |
x=x_col, | |
y='Model', | |
color=df['Test Result'], | |
color_discrete_map=color_discrete_map, | |
labels={x_col: 'Score', 'Model': 'Model'}, | |
title=title, | |
orientation='h') | |
fig.update_layout( | |
xaxis=dict(range=[0, x_range_max]), | |
title=dict(text=title, font=dict(size=16)), | |
xaxis_title=dict(font=dict(size=12)), | |
yaxis_title=dict(font=dict(size=12)), | |
yaxis=dict(autorange="reversed"), | |
autosize=True | |
) | |
return fig | |
elif exam_type == "MMLU-Pro-Hy": | |
df = pd.read_csv('mmlu_pro_hy_results.csv') | |
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology'] | |
df['Average'] = df[subject_cols].mean(axis=1) | |
df = df.sort_values(by=plot_column, ascending=False).reset_index(drop=True) | |
df = df.drop(columns=['Accuracy']) | |
x_col = plot_column | |
title = f'{plot_column}' | |
x_range_max = 1.0 | |
fig = px.bar(df, | |
x=x_col, | |
y='Model', | |
color=x_col, | |
color_continuous_scale='Viridis', | |
labels={x_col: 'Accuracy', 'Model': 'Model'}, | |
title=title, | |
orientation='h', | |
range_color=[0,1]) | |
fig.update_layout( | |
xaxis=dict(range=[0, x_range_max]), | |
title=dict(text=title, font=dict(size=16)), | |
xaxis_title=dict(font=dict(size=12)), | |
yaxis_title=dict(font=dict(size=12)), | |
yaxis=dict(autorange="reversed"), | |
autosize=True | |
) | |
return fig | |
with gr.Blocks() as app: | |
with gr.Tabs(): | |
with gr.TabItem("Armenian Unified Exams"): | |
gr.Markdown("# Armenian Unified Test Exams") | |
gr.HTML(f""" | |
<div style="font-size: 16px;"> | |
This benchmark contains results of various Language Models on Armenian Unified Test Exams for Armenian language and literature, Armenian history and mathematics. The scoring system is a 20-point scale, where 0-8 is a Fail, 8-18 is a Pass, and 18-20 is a Distinction. | |
</div> | |
""") | |
table_output_armenian = gr.DataFrame(value=lambda: display_table("Armenian Exams")) | |
plot_column_dropdown = gr.Dropdown(choices=['Average', 'Armenian language and literature', 'Armenian history', 'Mathematics'], value='Average', label='Select Column to Plot') | |
plot_output_armenian = gr.Plot(lambda column: create_bar_chart("Armenian Exams", column), inputs=plot_column_dropdown) | |
with gr.TabItem("MMLU-Pro-Hy"): | |
gr.Markdown("# MMLU-Pro Translated to Armenian (MMLU-Pro-Hy)") | |
gr.HTML(f""" | |
<div style="font-size: 16px;"> | |
This benchmark contains results of various Language Models on the MMLU-Pro benchmark, translated into Armenian. MMLU-Pro is a massive multi-task test in MCQA format. The scores represent accuracy. | |
</div> | |
""") | |
table_output_mmlu = gr.DataFrame(value=lambda: display_table("MMLU-Pro-Hy")) | |
subject_cols = ['Average','Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Philosophy', 'Physics', 'Psychology','Other'] | |
plot_column_dropdown_mmlu = gr.Dropdown(choices=subject_cols, value='Average', label='Select Column to Plot') | |
plot_output_mmlu = gr.Plot(lambda column: create_bar_chart("MMLU-Pro-Hy", column), inputs=plot_column_dropdown_mmlu) | |
app.launch(share=True, debug=True) |