ArmBench-LLM / app.py
Bagratuni's picture
commit
1b75b9d
raw
history blame
5.62 kB
import gradio as gr
import pandas as pd
import plotly.express as px
def display_table(exam_type):
if exam_type == "Armenian Exams":
df = pd.read_csv('unified_exam_results.csv')
df = df.sort_values(by='Average', ascending=False)
cols = df.columns.tolist()
cols.insert(1, cols.pop(cols.index('Average')))
df = df[cols]
df.rename(columns={'Armenian language and literature': 'Armenian language\nand literature'}, inplace=True)
df = df.round(4)
elif exam_type == "MMLU-Pro-Hy":
df = pd.read_csv('mmlu_pro_hy_results.csv')
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
df['Average'] = df[subject_cols].mean(axis=1)
df = df.sort_values(by='Average', ascending=False)
cols = df.columns.tolist()
cols.remove('Accuracy')
cols.insert(1, cols.pop(cols.index('Average')))
cols.append(cols.pop(cols.index('Other')))
df = df[cols]
df = df.round(4)
return df
def create_bar_chart(exam_type, plot_column):
if exam_type == "Armenian Exams":
df = pd.read_csv('unified_exam_results.csv')
df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True)
x_col = plot_column
title = f'{plot_column}'
x_range_max = 20
def get_label(score):
if score < 8:
return "Fail"
elif 8 <= score <= 18:
return "Pass"
else:
return "Distinction"
df['Test Result'] = df[plot_column].apply(get_label)
color_discrete_map = {
"Fail": "#ff5f56",
"Pass": "#ffbd2e",
"Distinction": "#27c93f"
}
fig = px.bar(df,
x=x_col,
y='Model',
color=df['Test Result'],
color_discrete_map=color_discrete_map,
labels={x_col: 'Score', 'Model': 'Model'},
title=title,
orientation='h')
fig.update_layout(
xaxis=dict(range=[0, x_range_max]),
title=dict(text=title, font=dict(size=16)),
xaxis_title=dict(font=dict(size=12)),
yaxis_title=dict(font=dict(size=12)),
yaxis=dict(autorange="reversed"),
autosize=True
)
return fig
elif exam_type == "MMLU-Pro-Hy":
df = pd.read_csv('mmlu_pro_hy_results.csv')
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
df['Average'] = df[subject_cols].mean(axis=1)
df = df.sort_values(by=plot_column, ascending=False).reset_index(drop=True)
df = df.drop(columns=['Accuracy'])
x_col = plot_column
title = f'{plot_column}'
x_range_max = 1.0
fig = px.bar(df,
x=x_col,
y='Model',
color=x_col,
color_continuous_scale='Viridis',
labels={x_col: 'Accuracy', 'Model': 'Model'},
title=title,
orientation='h',
range_color=[0,1])
fig.update_layout(
xaxis=dict(range=[0, x_range_max]),
title=dict(text=title, font=dict(size=16)),
xaxis_title=dict(font=dict(size=12)),
yaxis_title=dict(font=dict(size=12)),
yaxis=dict(autorange="reversed"),
autosize=True
)
return fig
with gr.Blocks() as app:
with gr.Tabs():
with gr.TabItem("Armenian Unified Exams"):
gr.Markdown("# Armenian Unified Test Exams")
gr.HTML(f"""
<div style="font-size: 16px;">
This benchmark contains results of various Language Models on Armenian Unified Test Exams for Armenian language and literature, Armenian history and mathematics. The scoring system is a 20-point scale, where 0-8 is a Fail, 8-18 is a Pass, and 18-20 is a Distinction.
</div>
""")
table_output_armenian = gr.DataFrame(value=lambda: display_table("Armenian Exams"))
plot_column_dropdown = gr.Dropdown(choices=['Average', 'Armenian language and literature', 'Armenian history', 'Mathematics'], value='Average', label='Select Column to Plot')
plot_output_armenian = gr.Plot(lambda column: create_bar_chart("Armenian Exams", column), inputs=plot_column_dropdown)
with gr.TabItem("MMLU-Pro-Hy"):
gr.Markdown("# MMLU-Pro Translated to Armenian (MMLU-Pro-Hy)")
gr.HTML(f"""
<div style="font-size: 16px;">
This benchmark contains results of various Language Models on the MMLU-Pro benchmark, translated into Armenian. MMLU-Pro is a massive multi-task test in MCQA format. The scores represent accuracy.
</div>
""")
table_output_mmlu = gr.DataFrame(value=lambda: display_table("MMLU-Pro-Hy"))
subject_cols = ['Average','Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Philosophy', 'Physics', 'Psychology','Other']
plot_column_dropdown_mmlu = gr.Dropdown(choices=subject_cols, value='Average', label='Select Column to Plot')
plot_output_mmlu = gr.Plot(lambda column: create_bar_chart("MMLU-Pro-Hy", column), inputs=plot_column_dropdown_mmlu)
app.launch(share=True, debug=True)