Spaces:
Running
Running
commit
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ def display_table(exam_type):
|
|
9 |
cols = df.columns.tolist()
|
10 |
cols.insert(1, cols.pop(cols.index('Average')))
|
11 |
df = df[cols]
|
|
|
|
|
12 |
elif exam_type == "MMLU-Pro-Hy":
|
13 |
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
14 |
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
@@ -19,13 +21,13 @@ def display_table(exam_type):
|
|
19 |
cols.insert(1, cols.pop(cols.index('Average')))
|
20 |
cols.append(cols.pop(cols.index('Other')))
|
21 |
df = df[cols]
|
|
|
22 |
return df
|
23 |
|
24 |
def create_bar_chart(exam_type, plot_column):
|
25 |
if exam_type == "Armenian Exams":
|
26 |
df = pd.read_csv('unified_exam_results.csv')
|
27 |
df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True)
|
28 |
-
|
29 |
x_col = plot_column
|
30 |
title = f'{plot_column}'
|
31 |
x_range_max = 20
|
@@ -37,7 +39,6 @@ def create_bar_chart(exam_type, plot_column):
|
|
37 |
else:
|
38 |
return "Distinction"
|
39 |
df['Test Result'] = df[plot_column].apply(get_label)
|
40 |
-
|
41 |
color_discrete_map = {
|
42 |
"Fail": "#ff5f56",
|
43 |
"Pass": "#ffbd2e",
|
@@ -51,27 +52,24 @@ def create_bar_chart(exam_type, plot_column):
|
|
51 |
labels={x_col: 'Score', 'Model': 'Model'},
|
52 |
title=title,
|
53 |
orientation='h')
|
54 |
-
|
55 |
fig.update_layout(
|
56 |
xaxis=dict(range=[0, x_range_max]),
|
57 |
title=dict(text=title, font=dict(size=16)),
|
58 |
xaxis_title=dict(font=dict(size=12)),
|
59 |
yaxis_title=dict(font=dict(size=12)),
|
60 |
-
yaxis=dict(autorange="reversed")
|
|
|
61 |
)
|
62 |
-
|
63 |
return fig
|
64 |
-
|
65 |
elif exam_type == "MMLU-Pro-Hy":
|
66 |
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
67 |
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
68 |
df['Average'] = df[subject_cols].mean(axis=1)
|
69 |
-
df = df.sort_values(by=
|
70 |
df = df.drop(columns=['Accuracy'])
|
71 |
x_col = plot_column
|
72 |
title = f'{plot_column}'
|
73 |
x_range_max = 1.0
|
74 |
-
|
75 |
fig = px.bar(df,
|
76 |
x=x_col,
|
77 |
y='Model',
|
@@ -81,35 +79,37 @@ def create_bar_chart(exam_type, plot_column):
|
|
81 |
title=title,
|
82 |
orientation='h',
|
83 |
range_color=[0,1])
|
84 |
-
|
85 |
fig.update_layout(
|
86 |
xaxis=dict(range=[0, x_range_max]),
|
87 |
title=dict(text=title, font=dict(size=16)),
|
88 |
xaxis_title=dict(font=dict(size=12)),
|
89 |
yaxis_title=dict(font=dict(size=12)),
|
90 |
-
yaxis=dict(autorange="reversed")
|
|
|
91 |
)
|
92 |
-
|
93 |
return fig
|
94 |
|
95 |
with gr.Blocks() as app:
|
96 |
with gr.Tabs():
|
97 |
with gr.TabItem("Armenian Unified Exams"):
|
98 |
gr.Markdown("# Armenian Unified Test Exams")
|
99 |
-
gr.
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
table_output_armenian = gr.DataFrame(value=lambda: display_table("Armenian Exams"))
|
103 |
plot_column_dropdown = gr.Dropdown(choices=['Average', 'Armenian language and literature', 'Armenian history', 'Mathematics'], value='Average', label='Select Column to Plot')
|
104 |
plot_output_armenian = gr.Plot(lambda column: create_bar_chart("Armenian Exams", column), inputs=plot_column_dropdown)
|
105 |
with gr.TabItem("MMLU-Pro-Hy"):
|
106 |
gr.Markdown("# MMLU-Pro Translated to Armenian (MMLU-Pro-Hy)")
|
107 |
-
gr.
|
108 |
-
|
109 |
-
|
|
|
|
|
110 |
table_output_mmlu = gr.DataFrame(value=lambda: display_table("MMLU-Pro-Hy"))
|
111 |
-
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', '
|
112 |
plot_column_dropdown_mmlu = gr.Dropdown(choices=subject_cols, value='Average', label='Select Column to Plot')
|
113 |
plot_output_mmlu = gr.Plot(lambda column: create_bar_chart("MMLU-Pro-Hy", column), inputs=plot_column_dropdown_mmlu)
|
114 |
-
|
115 |
app.launch(share=True, debug=True)
|
|
|
9 |
cols = df.columns.tolist()
|
10 |
cols.insert(1, cols.pop(cols.index('Average')))
|
11 |
df = df[cols]
|
12 |
+
df.rename(columns={'Armenian language and literature': 'Armenian language\nand literature'}, inplace=True)
|
13 |
+
df = df.round(4)
|
14 |
elif exam_type == "MMLU-Pro-Hy":
|
15 |
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
16 |
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
|
|
21 |
cols.insert(1, cols.pop(cols.index('Average')))
|
22 |
cols.append(cols.pop(cols.index('Other')))
|
23 |
df = df[cols]
|
24 |
+
df = df.round(4)
|
25 |
return df
|
26 |
|
27 |
def create_bar_chart(exam_type, plot_column):
|
28 |
if exam_type == "Armenian Exams":
|
29 |
df = pd.read_csv('unified_exam_results.csv')
|
30 |
df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True)
|
|
|
31 |
x_col = plot_column
|
32 |
title = f'{plot_column}'
|
33 |
x_range_max = 20
|
|
|
39 |
else:
|
40 |
return "Distinction"
|
41 |
df['Test Result'] = df[plot_column].apply(get_label)
|
|
|
42 |
color_discrete_map = {
|
43 |
"Fail": "#ff5f56",
|
44 |
"Pass": "#ffbd2e",
|
|
|
52 |
labels={x_col: 'Score', 'Model': 'Model'},
|
53 |
title=title,
|
54 |
orientation='h')
|
|
|
55 |
fig.update_layout(
|
56 |
xaxis=dict(range=[0, x_range_max]),
|
57 |
title=dict(text=title, font=dict(size=16)),
|
58 |
xaxis_title=dict(font=dict(size=12)),
|
59 |
yaxis_title=dict(font=dict(size=12)),
|
60 |
+
yaxis=dict(autorange="reversed"),
|
61 |
+
autosize=True
|
62 |
)
|
|
|
63 |
return fig
|
|
|
64 |
elif exam_type == "MMLU-Pro-Hy":
|
65 |
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
66 |
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
67 |
df['Average'] = df[subject_cols].mean(axis=1)
|
68 |
+
df = df.sort_values(by=plot_column, ascending=False).reset_index(drop=True)
|
69 |
df = df.drop(columns=['Accuracy'])
|
70 |
x_col = plot_column
|
71 |
title = f'{plot_column}'
|
72 |
x_range_max = 1.0
|
|
|
73 |
fig = px.bar(df,
|
74 |
x=x_col,
|
75 |
y='Model',
|
|
|
79 |
title=title,
|
80 |
orientation='h',
|
81 |
range_color=[0,1])
|
|
|
82 |
fig.update_layout(
|
83 |
xaxis=dict(range=[0, x_range_max]),
|
84 |
title=dict(text=title, font=dict(size=16)),
|
85 |
xaxis_title=dict(font=dict(size=12)),
|
86 |
yaxis_title=dict(font=dict(size=12)),
|
87 |
+
yaxis=dict(autorange="reversed"),
|
88 |
+
autosize=True
|
89 |
)
|
|
|
90 |
return fig
|
91 |
|
92 |
with gr.Blocks() as app:
|
93 |
with gr.Tabs():
|
94 |
with gr.TabItem("Armenian Unified Exams"):
|
95 |
gr.Markdown("# Armenian Unified Test Exams")
|
96 |
+
gr.HTML(f"""
|
97 |
+
<div style="font-size: 16px;">
|
98 |
+
This benchmark contains results of various Language Models on Armenian Unified Test Exams for Armenian language and literature, Armenian history and mathematics. The scoring system is a 20-point scale, where 0-8 is a Fail, 8-18 is a Pass, and 18-20 is a Distinction.
|
99 |
+
</div>
|
100 |
+
""")
|
101 |
table_output_armenian = gr.DataFrame(value=lambda: display_table("Armenian Exams"))
|
102 |
plot_column_dropdown = gr.Dropdown(choices=['Average', 'Armenian language and literature', 'Armenian history', 'Mathematics'], value='Average', label='Select Column to Plot')
|
103 |
plot_output_armenian = gr.Plot(lambda column: create_bar_chart("Armenian Exams", column), inputs=plot_column_dropdown)
|
104 |
with gr.TabItem("MMLU-Pro-Hy"):
|
105 |
gr.Markdown("# MMLU-Pro Translated to Armenian (MMLU-Pro-Hy)")
|
106 |
+
gr.HTML(f"""
|
107 |
+
<div style="font-size: 16px;">
|
108 |
+
This benchmark contains results of various Language Models on the MMLU-Pro benchmark, translated into Armenian. MMLU-Pro is a massive multi-task test in MCQA format. The scores represent accuracy.
|
109 |
+
</div>
|
110 |
+
""")
|
111 |
table_output_mmlu = gr.DataFrame(value=lambda: display_table("MMLU-Pro-Hy"))
|
112 |
+
subject_cols = ['Average','Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Philosophy', 'Physics', 'Psychology','Other']
|
113 |
plot_column_dropdown_mmlu = gr.Dropdown(choices=subject_cols, value='Average', label='Select Column to Plot')
|
114 |
plot_output_mmlu = gr.Plot(lambda column: create_bar_chart("MMLU-Pro-Hy", column), inputs=plot_column_dropdown_mmlu)
|
|
|
115 |
app.launch(share=True, debug=True)
|