AI_Project / app.py
Meshari21's picture
create app.py
c06fe3c verified
raw
history blame
29.8 kB
import gradio as gr
import sqlite3
import bcrypt
from datetime import datetime
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
import os
import logging
from dotenv import load_dotenv
from openai import OpenAI
load_dotenv() # Loads .env file
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
import json
from fpdf import FPDF
# --------------------------
# Environment Setup
# --------------------------
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
# --------------------------
# Global Tokenizer and Hybrid Model for Treatment Prediction
# --------------------------
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
class HybridMentalHealthModel(nn.Module):
def __init__(self, bert_model, num_genders, num_medications, num_therapies, hidden_size=128):
super(HybridMentalHealthModel, self).__init__()
self.bert = AutoModel.from_pretrained(bert_model)
bert_output_size = self.bert.config.hidden_size
self.age_fc = nn.Linear(1, 16)
self.gender_fc = nn.Embedding(num_genders, 16)
self.fc = nn.Linear(bert_output_size + 32, hidden_size)
self.medication_head = nn.Linear(hidden_size, num_medications)
self.therapy_head = nn.Linear(hidden_size, num_therapies)
def forward(self, input_ids, attention_mask, age, gender):
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :]
age_out = self.age_fc(age)
gender_out = self.gender_fc(gender)
combined = torch.cat((bert_output, age_out, gender_out), dim=1)
hidden = torch.relu(self.fc(combined))
return self.medication_head(hidden), self.therapy_head(hidden)
# --------------------------
# Global Label Mappings and Age Scaler
# --------------------------
medication_classes = ["Anxiolytics", "Benzodiazepines", "Antidepressants", "Mood Stabilizers", "Antipsychotics", "Stimulants"]
therapy_classes = ["Cognitive Behavioral Therapy", "Dialectical Behavioral Therapy", "Interpersonal Therapy", "Mindfulness-Based Therapy"] # Update with your types
gender_classes = ["Male", "Female", "Other"]
medication_encoder = {name: idx for idx, name in enumerate(medication_classes)}
inv_medication_encoder = {idx: name for name, idx in medication_encoder.items()}
therapy_encoder = {name: idx for idx, name in enumerate(therapy_classes)}
inv_therapy_encoder = {idx: name for name, idx in therapy_encoder.items()}
gender_encoder = {name: idx for idx, name in enumerate(gender_classes)}
mean_age = 50
std_age = 10
def scale_age(age):
return (age - mean_age) / std_age
# --------------------------
# Load the Hybrid Model (Treatment Prediction)
# --------------------------
num_genders = len(gender_classes)
num_medications = len(medication_classes)
num_therapies = len(therapy_classes)
MODEL_SAVE_PATH = "22.03.2025-16.02-ML128E10" # Update accordingly
model = HybridMentalHealthModel("emilyalsentzer/Bio_ClinicalBERT", num_genders, num_medications, num_therapies)
state_dict = torch.load(MODEL_SAVE_PATH, map_location=device)
if "gender_fc.weight" in state_dict:
del state_dict["gender_fc.weight"]
model.load_state_dict(state_dict, strict=False)
model.to(device)
model.eval()
# --------------------------
# Global Diagnosis Model (Mental Health Diagnosis)
# --------------------------
diagnosis_tokenizer = AutoTokenizer.from_pretrained("ethandavey/mental-health-diagnosis-bert") # Update with your model ID
diagnosis_model = AutoModelForSequenceClassification.from_pretrained("ethandavey/mental-health-diagnosis-bert") # Update with your model ID
diagnosis_model.to(device)
diagnosis_model.eval()
def predict_disease(text):
inputs = diagnosis_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = diagnosis_model(**inputs)
probabilities = F.softmax(outputs.logits, dim=1).squeeze()
label_mapping = {0: "Anxiety", 1: "Normal", 2: "Depression", 3: "Suicidal", 4: "Stress"}
topk = torch.topk(probabilities, k=3)
top_preds = [(label_mapping[i.item()], probabilities[i].item()) for i in topk.indices]
return top_preds
def predict_med_therapy(symptoms, age, gender):
encoding = tokenizer(symptoms, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
age_norm = torch.tensor([[scale_age(age)]], dtype=torch.float32).to(device)
gender_idx = gender_encoder.get(gender, 0)
gender_tensor = torch.tensor([gender_idx], dtype=torch.long).to(device)
with torch.no_grad():
med_logits, therapy_logits = model(input_ids, attention_mask, age_norm, gender_tensor)
med_probabilities = torch.softmax(med_logits, dim=1)
therapy_probabilities = torch.softmax(therapy_logits, dim=1)
med_pred = torch.argmax(med_probabilities, dim=1).item()
therapy_pred = torch.argmax(therapy_probabilities, dim=1).item()
med_confidence = med_probabilities[0][med_pred].item()
therapy_confidence = therapy_probabilities[0][therapy_pred].item()
predicted_med = inv_medication_encoder.get(med_pred, "Unknown")
predicted_therapy = inv_therapy_encoder.get(therapy_pred, "Unknown")
return (predicted_med, med_confidence), (predicted_therapy, therapy_confidence)
# --------------------------
# OpenAI Functions (Summarization and Explanation)
# --------------------------
def get_concise_rewrite(text, max_tokens, temperature=0.7):
messages = [
{"role": "system", "content": "You are an expert rewriting assistant. Rewrite the given statement into a concise version while preserving its tone and vocabulary."},
{"role": "user", "content": text}
]
try:
response = client.chat.completions.create(model="gpt-4o-mini", messages=messages, max_tokens=max_tokens, temperature=temperature)
concise_text = response.choices[0].message.content.strip()
except Exception as e:
concise_text = f"API call failed: {e}"
return concise_text
def get_explanation(patient_statement, predicted_diagnosis):
messages = [
{"role": "system", "content": "You are an expert mental health assistant. Provide a concise, evidence-based explanation of how the patient's statement supports the diagnosis."},
{"role": "user", "content": f"Patient statement: {patient_statement}\nPredicted diagnosis: {predicted_diagnosis}\nExplain briefly."}
]
try:
response = client.chat.completions.create(model="gpt-4o-mini", messages=messages, max_tokens=256)
explanation = response.choices[0].message.content.strip()
except Exception as e:
explanation = "API call failed."
return explanation
# --------------------------
# Database Functions
# --------------------------
def init_db():
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password TEXT NOT NULL,
full_name TEXT,
email TEXT
)
""")
c.execute("""
CREATE TABLE IF NOT EXISTS chat_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT NOT NULL,
message TEXT NOT NULL,
response TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
c.execute("""
CREATE TABLE IF NOT EXISTS patient_sessions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
patient_name TEXT,
age REAL,
gender TEXT,
symptoms TEXT,
diagnosis TEXT,
medication TEXT,
therapy TEXT,
summary TEXT,
explanation TEXT,
pdf_report TEXT,
session_timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
appointment_date DATE
)
""")
conn.commit()
conn.close()
def register_user(username, password, full_name, email):
if not re.fullmatch(r"[^@]+@[^@]+\.[^@]+", email):
return "Invalid email format."
if len(password) <= 8:
return "Password must be more than 8 characters."
conn = sqlite3.connect("users.db")
c = conn.cursor()
hashed = bcrypt.hashpw(password.encode(), bcrypt.gensalt())
try:
c.execute("INSERT INTO users (username, password, full_name, email) VALUES (?, ?, ?, ?)", (username, hashed, full_name, email))
conn.commit()
return "User registered successfully."
except sqlite3.IntegrityError:
return "Username already exists."
finally:
conn.close()
def login_user(username, password):
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("SELECT password FROM users WHERE username = ?", (username,))
user = c.fetchone()
conn.close()
if user and bcrypt.checkpw(password.encode(), user[0]):
return True
return False
def get_user_info(username):
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("SELECT username, email, full_name FROM users WHERE username = ?", (username,))
user = c.fetchone()
conn.close()
if user:
return f"Username: {user[0]}\nFull Name: {user[2]}\nEmail: {user[1]}"
else:
return "User info not found."
def get_chat_history(username):
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("SELECT message, response, timestamp FROM chat_history WHERE username = ? ORDER BY timestamp DESC", (username,))
history = c.fetchall()
conn.close()
return history
def get_patient_sessions(filter_name="", filter_date=""):
conn = sqlite3.connect("users.db")
c = conn.cursor()
query = "SELECT patient_name, age, gender, symptoms, diagnosis, medication, therapy, summary, explanation, pdf_report, session_timestamp FROM patient_sessions WHERE 1=1"
params = []
if filter_name:
query += " AND patient_name LIKE ?"
params.append(f"%{filter_name}%")
if filter_date:
query += " AND DATE(session_timestamp)=?"
params.append(filter_date)
c.execute(query, params)
sessions = c.fetchall()
conn.close()
return sessions
def insert_patient_session(session_data):
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("""
INSERT INTO patient_sessions (username, patient_name, age, gender, symptoms, diagnosis, medication, therapy, summary, explanation, pdf_report, appointment_date)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
session_data.get("username"), session_data.get("patient_name"), session_data.get("age"), session_data.get("gender"),
session_data.get("symptoms"), session_data.get("diagnosis"), session_data.get("medication"),
session_data.get("therapy"), session_data.get("summary"), session_data.get("explanation"),
session_data.get("pdf_report"), session_data.get("appointment_date")))
conn.commit()
conn.close()
# --------------------------
# PDF Report Generation Function
# --------------------------
def generate_pdf_report(session_data):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt="Patient Session Report", ln=True, align='C')
pdf.ln(10)
for key, value in session_data.items():
pdf.multi_cell(0, 10, txt=f"{key.capitalize()}: {value}")
reports_dir = "reports"
os.makedirs(reports_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{reports_dir}/{session_data.get('patient_name')}_{timestamp}.pdf"
pdf.output(filename)
return filename
# --------------------------
# Helper: Autofill Previous Patient Info
# --------------------------
def get_previous_patient_info(selected_patient):
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("SELECT patient_name, age, gender FROM patient_sessions WHERE patient_name=? ORDER BY session_timestamp DESC LIMIT 1", (selected_patient,))
record = c.fetchone()
conn.close()
if record:
return record[0], record[1], record[2]
else:
return "", None, ""
def get_previous_patients():
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute("SELECT DISTINCT patient_name FROM patient_sessions")
records = c.fetchall()
conn.close()
return [r[0] for r in records]
# --------------------------
# Gradio UI Setup with External CSS
# --------------------------
with gr.Blocks(css=open("styles.css", "r").read(), theme="soft") as app:
user_session = gr.State(value="")
profile_visible = gr.State(value=False)
session_data_state = gr.State(value="")
with gr.Row(elem_id="header") as header_row:
with gr.Column(scale=8):
gr.Markdown("## Mental Health Chatbot")
with gr.Column(scale=4) as profile_container:
profile_button = gr.Button("👤", elem_id="profile_button", variant="secondary")
with gr.Column(visible=False, elem_id="profile_info_box") as profile_info_box:
profile_info = gr.HTML()
logout_button = gr.Button("Logout", elem_id="logout_button")
with gr.Column(visible=True, elem_id="login_page") as login_page:
gr.Markdown("## Login")
with gr.Row():
username_login = gr.Textbox(label="Username")
password_login = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
login_output = gr.Textbox(label="Login Status", interactive=False)
gr.Markdown("New user? Click below to register.")
go_to_register = gr.Button("Go to Register")
with gr.Column(visible=False, elem_id="register_page") as register_page:
gr.Markdown("## Register")
new_username = gr.Textbox(label="New Username")
new_password = gr.Textbox(label="New Password", type="password")
full_name = gr.Textbox(label="Full Name")
email = gr.Textbox(label="Email")
register_btn = gr.Button("Register")
register_output = gr.Textbox(label="Registration Status", interactive=False)
gr.Markdown("Already have an account?")
back_to_login = gr.Button("Back to Login")
with gr.Tabs(visible=False, elem_id="main_panel") as main_panel:
with gr.Tab("Chatbot"):
with gr.Row():
with gr.Column(scale=1):
previous_patient = gr.Dropdown(label="Previous Patients", choices=[], interactive=True)
patient_name_input = gr.Textbox(placeholder="Enter patient name", label="Patient Name")
gender_input = gr.Dropdown(choices=list(gender_encoder.keys()), label="Gender")
age_input = gr.Number(label="Age")
symptoms_input = gr.Textbox(placeholder="Describe symptoms", label="Symptoms", lines=4)
submit = gr.Button("Submit")
generate_report_btn = gr.Button("Generate Report", visible=False)
with gr.Column(scale=1):
with gr.Row():
with gr.Column(scale=4, min_width=240): # Textbox column
diagnosis_textbox = gr.Textbox(label="Diagnosis",
interactive=False)
with gr.Column(scale=1, min_width=120): # Confidence column
diagnosis_conf_html = gr.HTML(elem_classes=["confidence-container"])
with gr.Row():
with gr.Column(scale=4, min_width=240):
medication_textbox = gr.Textbox(label="Medication",
interactive=False)
with gr.Column(scale=1, min_width=120):
medication_conf_html = gr.HTML(elem_classes=["confidence-container"])
with gr.Row():
with gr.Column(scale=4, min_width=240):
therapy_textbox = gr.Textbox(label="Therapy",
interactive=False)
with gr.Column(scale=1, min_width=120):
therapy_conf_html = gr.HTML(elem_classes=["confidence-container"])
summary_textbox = gr.Textbox(label="Concise Summary", interactive=False)
explanation_textbox = gr.Textbox(label="Explanation", interactive=False)
with gr.Row():
report_download = gr.File(label="Download Report", interactive=False)
def handle_chat_extended(patient_name, gender, age, symptoms):
if age is None or age <= 0:
error_msg = "Age must be greater than 0."
return (error_msg, "", error_msg, "", error_msg, "", error_msg, error_msg, gr.update(visible=False))
if age > 150:
error_msg2 = "Age must be lower than 150"
return (error_msg2, "", error_msg2, "", error_msg2, "", error_msg2, error_msg2, gr.update(visible=False))
if len(symptoms.split()) > 512:
msg = "Input exceeds maximum allowed length of 512 words."
return (msg, "", msg, "", msg, "", msg, msg, gr.update(visible=False))
full_statement = f"Patient Name: {patient_name}, Gender: {gender}, Age: {age}, Symptoms: {symptoms}"
summary = get_concise_rewrite(full_statement, max_tokens=150, temperature=0.7)
# Predict top 3 diagnoses
diagnosis_preds = predict_disease(full_statement) # Now returns list of (label, confidence)
diagnosis_display = "\n".join([f"{label}" for label, _ in diagnosis_preds])
def get_confidence_class(percentage):
if percentage <= 50:
return "confidence-low"
elif percentage <= 74:
return "confidence-medium"
else:
return "confidence-high"
diagnosis_conf_html_val = "<div class='confidence-multi'>" + "<br>".join([
f"<div class='confidence-display'><span class='confidence-value {get_confidence_class(conf * 100)}'>{conf * 100:.1f}% confidence</span></div>"
for _, conf in diagnosis_preds
]) + "</div>"
# Predict medication and therapy
(med_pred, med_conf), (therapy_pred, therapy_conf) = predict_med_therapy(symptoms, age, gender)
med_percentage = med_conf * 100
therapy_percentage = therapy_conf * 100
def get_conf_html(percentage):
return f"""
<div class="confidence-display">
<span class="confidence-value {get_confidence_class(percentage)}">
{percentage:.1f}% confidence
</span>
</div>
"""
medication_conf_html_val = get_conf_html(med_percentage)
therapy_conf_html_val = get_conf_html(therapy_percentage)
# Explanation
top_diag_labels = ", ".join([label for label, _ in diagnosis_preds])
explanation = get_explanation(full_statement, f"{top_diag_labels}, {med_pred} and {therapy_pred}")
# Prepare session data
top_diag_with_conf = ", ".join([f"{label} ({conf * 100:.1f}%)" for label, conf in diagnosis_preds])
session_data = {
"patient_name": patient_name,
"age": age,
"gender": gender,
"symptoms": symptoms,
"diagnosis": top_diag_with_conf,
"medication": f"{med_pred} ({med_percentage:.1f}% confidence)",
"therapy": f"{therapy_pred} ({therapy_percentage:.1f}% confidence)",
"summary": summary,
"explanation": explanation,
"session_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
session_data_state.value = json.dumps(session_data)
# Save to chat history
conn = sqlite3.connect("users.db")
c = conn.cursor()
if user_session.value:
c.execute("INSERT INTO chat_history (username, message, response) VALUES (?, ?, ?)",
(user_session.value, full_statement, top_diag_with_conf))
conn.commit()
conn.close()
return (
diagnosis_display, diagnosis_conf_html_val,
med_pred, medication_conf_html_val,
therapy_pred, therapy_conf_html_val,
summary, explanation,
gr.update(visible=True)
)
submit.click(handle_chat_extended,
inputs=[patient_name_input, gender_input, age_input, symptoms_input],
outputs=[diagnosis_textbox, diagnosis_conf_html, medication_textbox, medication_conf_html,
therapy_textbox, therapy_conf_html, summary_textbox, explanation_textbox,
generate_report_btn])
def handle_generate_report():
try:
data = json.loads(session_data_state.value)
except:
return None
pdf_file = generate_pdf_report(data)
data["username"] = user_session.value
data["appointment_date"] = ""
data["pdf_report"] = pdf_file
insert_patient_session(data)
return pdf_file
generate_report_btn.click(handle_generate_report, outputs=report_download)
def autofill_previous(selected_patient):
name, age_val, gender_val = get_previous_patient_info(selected_patient)
return name, age_val, gender_val
previous_patient.change(autofill_previous,
inputs=[previous_patient],
outputs=[patient_name_input, age_input, gender_input])
with gr.Tab("Chat History"):
history_output = gr.Textbox(label="Chat History", interactive=False)
load_history_btn = gr.Button("Load History")
def load_history():
if user_session.value:
history = get_chat_history(user_session.value)
return "\n".join([f"[{h[2]}] {h[0]}\nBot: {h[1]}" for h in history])
else:
return "Please log in to view history."
load_history_btn.click(load_history, outputs=history_output)
with gr.Tab("Book an Appointment"):
with gr.Row():
with gr.Column():
patient_name_appt = gr.Textbox(label="Patient Name", placeholder="Enter your name")
doctor_name = gr.Dropdown(choices=["Dr. Smith", "Dr. Johnson", "Dr. Lee"], label="Select Doctor")
appointment_date = gr.Textbox(label="Appointment Date", placeholder="YYYY-MM-DD")
appointment_time = gr.Textbox(label="Appointment Time", placeholder="HH:MM (24-hour format)")
reason = gr.TextArea(label="Reason for Visit", placeholder="Describe your symptoms or reason for the visit")
book_button = gr.Button("Book Appointment")
with gr.Column():
booking_output = gr.Textbox(label="Booking Confirmation", interactive=False)
def book_appointment(patient_name, doctor_name, appointment_date, appointment_time, reason):
if not user_session.value:
return "Please log in to book an appointment."
patient_name = (patient_name or "").strip()
doctor_name = (doctor_name or "").strip()
appointment_date = (appointment_date or "").strip()
appointment_time = (appointment_time or "").strip()
reason = (reason or "").strip()
if not (patient_name and doctor_name and appointment_date and appointment_time and reason):
return "Please fill in all the fields."
if not re.fullmatch(r"[A-Za-z ]+", patient_name):
return "Patient name should contain only letters and spaces."
try:
datetime.strptime(appointment_date, "%Y-%m-%d")
except ValueError:
return "Appointment date must be in YYYY-MM-DD format."
try:
datetime.strptime(appointment_time, "%H:%M")
except ValueError:
return "Appointment time must be in HH:MM (24-hour) format."
confirmation = (f"Appointment booked for {patient_name} with {doctor_name} on {appointment_date} at {appointment_time}.\n\n"
f"Reason: {reason}")
return confirmation
book_button.click(book_appointment,
inputs=[patient_name_appt, doctor_name, appointment_date, appointment_time, reason],
outputs=booking_output)
with gr.Tab("Patient Sessions"):
gr.Markdown("### Search Patient Sessions")
search_name = gr.Textbox(label="Patient Name (optional)")
search_date = gr.Textbox(label="Date (YYYY-MM-DD, optional)")
search_button = gr.Button("Search")
sessions_output = gr.Textbox(label="Sessions", interactive=False)
def search_sessions(name, date):
sessions = get_patient_sessions(filter_name=name, filter_date=date)
if sessions:
output = "\n\n".join([f"Patient: {s[0]}\nAge: {s[1]}\nGender: {s[2]}\nSymptoms: {s[3]}\nDiagnosis: {s[4]}\nMedication: {s[5]}\nTherapy: {s[6]}\nSummary: {s[7]}\nExplanation: {s[8]}\nReport: {s[9]}\nSession Time: {s[10]}" for s in sessions])
return output
else:
return "No sessions found."
search_button.click(search_sessions, inputs=[search_name, search_date], outputs=sessions_output)
def handle_login(username, password):
if login_user(username, password):
user_session.value = username
prev_choices = get_previous_patients()
return (f"Welcome, {username}!",
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(choices=prev_choices))
else:
return "Invalid credentials.", gr.update(), gr.update(), gr.update(), gr.update()
def handle_register(username, password, full_name, email):
return register_user(username, password, full_name, email)
def go_to_register_page():
return gr.update(visible=False), gr.update(visible=True)
def back_to_login_page():
return gr.update(visible=True), gr.update(visible=False)
login_btn.click(handle_login,
inputs=[username_login, password_login],
outputs=[login_output, main_panel, login_page, header_row])
go_to_register.click(go_to_register_page, outputs=[login_page, register_page])
register_btn.click(handle_register,
inputs=[new_username, new_password, full_name, email],
outputs=register_output)
back_to_login.click(back_to_login_page, outputs=[login_page, register_page])
# Toggle profile function
def toggle_profile(user, current_visible):
if not user:
return gr.update(visible=False), False, ""
new_visible = not current_visible
info = get_user_info(user) if new_visible else ""
return gr.update(visible=new_visible), new_visible, info
# Connect profile button click with correct input order:
profile_button.click(
toggle_profile,
inputs=[user_session, profile_visible],
outputs=[profile_info_box, profile_visible, profile_info]
)
# Handle login: update previous patients dropdown
def handle_login(username, password):
if login_user(username, password):
user_session.value = username
prev_choices = get_previous_patients()
return (f"Welcome, {username}!",
gr.update(visible=True), # main_panel visible
gr.update(visible=False), # login_page hidden
gr.update(visible=True), # header_row visible
gr.update(choices=prev_choices)) # update dropdown choices
else:
return "Invalid credentials.", gr.update(), gr.update(), gr.update(), gr.update()
# Connect login button click:
login_btn.click(
handle_login,
inputs=[username_login, password_login],
outputs=[login_output, main_panel, login_page, header_row, previous_patient]
)
init_db()
app.launch()