Spaces:
Running
Running
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sqlite3
|
3 |
+
import bcrypt
|
4 |
+
from datetime import datetime
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
from openai import OpenAI
|
14 |
+
load_dotenv() # Loads .env file
|
15 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
16 |
+
import json
|
17 |
+
from fpdf import FPDF
|
18 |
+
|
19 |
+
# --------------------------
|
20 |
+
# Environment Setup
|
21 |
+
# --------------------------
|
22 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
print("Using device:", device)
|
25 |
+
|
26 |
+
# --------------------------
|
27 |
+
# Global Tokenizer and Hybrid Model for Treatment Prediction
|
28 |
+
# --------------------------
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
30 |
+
|
31 |
+
|
32 |
+
class HybridMentalHealthModel(nn.Module):
|
33 |
+
def __init__(self, bert_model, num_genders, num_medications, num_therapies, hidden_size=128):
|
34 |
+
super(HybridMentalHealthModel, self).__init__()
|
35 |
+
self.bert = AutoModel.from_pretrained(bert_model)
|
36 |
+
bert_output_size = self.bert.config.hidden_size
|
37 |
+
self.age_fc = nn.Linear(1, 16)
|
38 |
+
self.gender_fc = nn.Embedding(num_genders, 16)
|
39 |
+
self.fc = nn.Linear(bert_output_size + 32, hidden_size)
|
40 |
+
self.medication_head = nn.Linear(hidden_size, num_medications)
|
41 |
+
self.therapy_head = nn.Linear(hidden_size, num_therapies)
|
42 |
+
|
43 |
+
def forward(self, input_ids, attention_mask, age, gender):
|
44 |
+
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :]
|
45 |
+
age_out = self.age_fc(age)
|
46 |
+
gender_out = self.gender_fc(gender)
|
47 |
+
combined = torch.cat((bert_output, age_out, gender_out), dim=1)
|
48 |
+
hidden = torch.relu(self.fc(combined))
|
49 |
+
return self.medication_head(hidden), self.therapy_head(hidden)
|
50 |
+
|
51 |
+
|
52 |
+
# --------------------------
|
53 |
+
# Global Label Mappings and Age Scaler
|
54 |
+
# --------------------------
|
55 |
+
medication_classes = ["Anxiolytics", "Benzodiazepines", "Antidepressants", "Mood Stabilizers", "Antipsychotics", "Stimulants"]
|
56 |
+
therapy_classes = ["Cognitive Behavioral Therapy", "Dialectical Behavioral Therapy", "Interpersonal Therapy", "Mindfulness-Based Therapy"] # Update with your types
|
57 |
+
gender_classes = ["Male", "Female", "Other"]
|
58 |
+
|
59 |
+
medication_encoder = {name: idx for idx, name in enumerate(medication_classes)}
|
60 |
+
inv_medication_encoder = {idx: name for name, idx in medication_encoder.items()}
|
61 |
+
therapy_encoder = {name: idx for idx, name in enumerate(therapy_classes)}
|
62 |
+
inv_therapy_encoder = {idx: name for name, idx in therapy_encoder.items()}
|
63 |
+
gender_encoder = {name: idx for idx, name in enumerate(gender_classes)}
|
64 |
+
|
65 |
+
mean_age = 50
|
66 |
+
std_age = 10
|
67 |
+
|
68 |
+
def scale_age(age):
|
69 |
+
return (age - mean_age) / std_age
|
70 |
+
|
71 |
+
# --------------------------
|
72 |
+
# Load the Hybrid Model (Treatment Prediction)
|
73 |
+
# --------------------------
|
74 |
+
num_genders = len(gender_classes)
|
75 |
+
num_medications = len(medication_classes)
|
76 |
+
num_therapies = len(therapy_classes)
|
77 |
+
MODEL_SAVE_PATH = "22.03.2025-16.02-ML128E10" # Update accordingly
|
78 |
+
|
79 |
+
model = HybridMentalHealthModel("emilyalsentzer/Bio_ClinicalBERT", num_genders, num_medications, num_therapies)
|
80 |
+
state_dict = torch.load(MODEL_SAVE_PATH, map_location=device)
|
81 |
+
if "gender_fc.weight" in state_dict:
|
82 |
+
del state_dict["gender_fc.weight"]
|
83 |
+
model.load_state_dict(state_dict, strict=False)
|
84 |
+
model.to(device)
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
# --------------------------
|
88 |
+
# Global Diagnosis Model (Mental Health Diagnosis)
|
89 |
+
# --------------------------
|
90 |
+
diagnosis_tokenizer = AutoTokenizer.from_pretrained("ethandavey/mental-health-diagnosis-bert") # Update with your model ID
|
91 |
+
diagnosis_model = AutoModelForSequenceClassification.from_pretrained("ethandavey/mental-health-diagnosis-bert") # Update with your model ID
|
92 |
+
diagnosis_model.to(device)
|
93 |
+
diagnosis_model.eval()
|
94 |
+
|
95 |
+
def predict_disease(text):
|
96 |
+
inputs = diagnosis_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
97 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
98 |
+
with torch.no_grad():
|
99 |
+
outputs = diagnosis_model(**inputs)
|
100 |
+
probabilities = F.softmax(outputs.logits, dim=1).squeeze()
|
101 |
+
label_mapping = {0: "Anxiety", 1: "Normal", 2: "Depression", 3: "Suicidal", 4: "Stress"}
|
102 |
+
|
103 |
+
topk = torch.topk(probabilities, k=3)
|
104 |
+
top_preds = [(label_mapping[i.item()], probabilities[i].item()) for i in topk.indices]
|
105 |
+
return top_preds
|
106 |
+
|
107 |
+
|
108 |
+
def predict_med_therapy(symptoms, age, gender):
|
109 |
+
encoding = tokenizer(symptoms, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
|
110 |
+
input_ids = encoding["input_ids"].to(device)
|
111 |
+
attention_mask = encoding["attention_mask"].to(device)
|
112 |
+
age_norm = torch.tensor([[scale_age(age)]], dtype=torch.float32).to(device)
|
113 |
+
gender_idx = gender_encoder.get(gender, 0)
|
114 |
+
gender_tensor = torch.tensor([gender_idx], dtype=torch.long).to(device)
|
115 |
+
with torch.no_grad():
|
116 |
+
med_logits, therapy_logits = model(input_ids, attention_mask, age_norm, gender_tensor)
|
117 |
+
med_probabilities = torch.softmax(med_logits, dim=1)
|
118 |
+
therapy_probabilities = torch.softmax(therapy_logits, dim=1)
|
119 |
+
med_pred = torch.argmax(med_probabilities, dim=1).item()
|
120 |
+
therapy_pred = torch.argmax(therapy_probabilities, dim=1).item()
|
121 |
+
med_confidence = med_probabilities[0][med_pred].item()
|
122 |
+
therapy_confidence = therapy_probabilities[0][therapy_pred].item()
|
123 |
+
predicted_med = inv_medication_encoder.get(med_pred, "Unknown")
|
124 |
+
predicted_therapy = inv_therapy_encoder.get(therapy_pred, "Unknown")
|
125 |
+
return (predicted_med, med_confidence), (predicted_therapy, therapy_confidence)
|
126 |
+
|
127 |
+
# --------------------------
|
128 |
+
# OpenAI Functions (Summarization and Explanation)
|
129 |
+
# --------------------------
|
130 |
+
def get_concise_rewrite(text, max_tokens, temperature=0.7):
|
131 |
+
messages = [
|
132 |
+
{"role": "system", "content": "You are an expert rewriting assistant. Rewrite the given statement into a concise version while preserving its tone and vocabulary."},
|
133 |
+
{"role": "user", "content": text}
|
134 |
+
]
|
135 |
+
try:
|
136 |
+
response = client.chat.completions.create(model="gpt-4o-mini", messages=messages, max_tokens=max_tokens, temperature=temperature)
|
137 |
+
concise_text = response.choices[0].message.content.strip()
|
138 |
+
except Exception as e:
|
139 |
+
concise_text = f"API call failed: {e}"
|
140 |
+
return concise_text
|
141 |
+
|
142 |
+
def get_explanation(patient_statement, predicted_diagnosis):
|
143 |
+
messages = [
|
144 |
+
{"role": "system", "content": "You are an expert mental health assistant. Provide a concise, evidence-based explanation of how the patient's statement supports the diagnosis."},
|
145 |
+
{"role": "user", "content": f"Patient statement: {patient_statement}\nPredicted diagnosis: {predicted_diagnosis}\nExplain briefly."}
|
146 |
+
]
|
147 |
+
try:
|
148 |
+
response = client.chat.completions.create(model="gpt-4o-mini", messages=messages, max_tokens=256)
|
149 |
+
explanation = response.choices[0].message.content.strip()
|
150 |
+
except Exception as e:
|
151 |
+
explanation = "API call failed."
|
152 |
+
return explanation
|
153 |
+
|
154 |
+
# --------------------------
|
155 |
+
# Database Functions
|
156 |
+
# --------------------------
|
157 |
+
def init_db():
|
158 |
+
conn = sqlite3.connect("users.db")
|
159 |
+
c = conn.cursor()
|
160 |
+
c.execute("""
|
161 |
+
CREATE TABLE IF NOT EXISTS users (
|
162 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
163 |
+
username TEXT UNIQUE NOT NULL,
|
164 |
+
password TEXT NOT NULL,
|
165 |
+
full_name TEXT,
|
166 |
+
email TEXT
|
167 |
+
)
|
168 |
+
""")
|
169 |
+
c.execute("""
|
170 |
+
CREATE TABLE IF NOT EXISTS chat_history (
|
171 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
172 |
+
username TEXT NOT NULL,
|
173 |
+
message TEXT NOT NULL,
|
174 |
+
response TEXT NOT NULL,
|
175 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
176 |
+
)
|
177 |
+
""")
|
178 |
+
c.execute("""
|
179 |
+
CREATE TABLE IF NOT EXISTS patient_sessions (
|
180 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
181 |
+
username TEXT,
|
182 |
+
patient_name TEXT,
|
183 |
+
age REAL,
|
184 |
+
gender TEXT,
|
185 |
+
symptoms TEXT,
|
186 |
+
diagnosis TEXT,
|
187 |
+
medication TEXT,
|
188 |
+
therapy TEXT,
|
189 |
+
summary TEXT,
|
190 |
+
explanation TEXT,
|
191 |
+
pdf_report TEXT,
|
192 |
+
session_timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
|
193 |
+
appointment_date DATE
|
194 |
+
)
|
195 |
+
""")
|
196 |
+
conn.commit()
|
197 |
+
conn.close()
|
198 |
+
|
199 |
+
def register_user(username, password, full_name, email):
|
200 |
+
if not re.fullmatch(r"[^@]+@[^@]+\.[^@]+", email):
|
201 |
+
return "Invalid email format."
|
202 |
+
if len(password) <= 8:
|
203 |
+
return "Password must be more than 8 characters."
|
204 |
+
conn = sqlite3.connect("users.db")
|
205 |
+
c = conn.cursor()
|
206 |
+
hashed = bcrypt.hashpw(password.encode(), bcrypt.gensalt())
|
207 |
+
try:
|
208 |
+
c.execute("INSERT INTO users (username, password, full_name, email) VALUES (?, ?, ?, ?)", (username, hashed, full_name, email))
|
209 |
+
conn.commit()
|
210 |
+
return "User registered successfully."
|
211 |
+
except sqlite3.IntegrityError:
|
212 |
+
return "Username already exists."
|
213 |
+
finally:
|
214 |
+
conn.close()
|
215 |
+
|
216 |
+
def login_user(username, password):
|
217 |
+
conn = sqlite3.connect("users.db")
|
218 |
+
c = conn.cursor()
|
219 |
+
c.execute("SELECT password FROM users WHERE username = ?", (username,))
|
220 |
+
user = c.fetchone()
|
221 |
+
conn.close()
|
222 |
+
if user and bcrypt.checkpw(password.encode(), user[0]):
|
223 |
+
return True
|
224 |
+
return False
|
225 |
+
|
226 |
+
def get_user_info(username):
|
227 |
+
conn = sqlite3.connect("users.db")
|
228 |
+
c = conn.cursor()
|
229 |
+
c.execute("SELECT username, email, full_name FROM users WHERE username = ?", (username,))
|
230 |
+
user = c.fetchone()
|
231 |
+
conn.close()
|
232 |
+
if user:
|
233 |
+
return f"Username: {user[0]}\nFull Name: {user[2]}\nEmail: {user[1]}"
|
234 |
+
else:
|
235 |
+
return "User info not found."
|
236 |
+
|
237 |
+
def get_chat_history(username):
|
238 |
+
conn = sqlite3.connect("users.db")
|
239 |
+
c = conn.cursor()
|
240 |
+
c.execute("SELECT message, response, timestamp FROM chat_history WHERE username = ? ORDER BY timestamp DESC", (username,))
|
241 |
+
history = c.fetchall()
|
242 |
+
conn.close()
|
243 |
+
return history
|
244 |
+
|
245 |
+
def get_patient_sessions(filter_name="", filter_date=""):
|
246 |
+
conn = sqlite3.connect("users.db")
|
247 |
+
c = conn.cursor()
|
248 |
+
query = "SELECT patient_name, age, gender, symptoms, diagnosis, medication, therapy, summary, explanation, pdf_report, session_timestamp FROM patient_sessions WHERE 1=1"
|
249 |
+
params = []
|
250 |
+
if filter_name:
|
251 |
+
query += " AND patient_name LIKE ?"
|
252 |
+
params.append(f"%{filter_name}%")
|
253 |
+
if filter_date:
|
254 |
+
query += " AND DATE(session_timestamp)=?"
|
255 |
+
params.append(filter_date)
|
256 |
+
c.execute(query, params)
|
257 |
+
sessions = c.fetchall()
|
258 |
+
conn.close()
|
259 |
+
return sessions
|
260 |
+
|
261 |
+
def insert_patient_session(session_data):
|
262 |
+
conn = sqlite3.connect("users.db")
|
263 |
+
c = conn.cursor()
|
264 |
+
c.execute("""
|
265 |
+
INSERT INTO patient_sessions (username, patient_name, age, gender, symptoms, diagnosis, medication, therapy, summary, explanation, pdf_report, appointment_date)
|
266 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
267 |
+
""", (
|
268 |
+
session_data.get("username"), session_data.get("patient_name"), session_data.get("age"), session_data.get("gender"),
|
269 |
+
session_data.get("symptoms"), session_data.get("diagnosis"), session_data.get("medication"),
|
270 |
+
session_data.get("therapy"), session_data.get("summary"), session_data.get("explanation"),
|
271 |
+
session_data.get("pdf_report"), session_data.get("appointment_date")))
|
272 |
+
conn.commit()
|
273 |
+
conn.close()
|
274 |
+
|
275 |
+
# --------------------------
|
276 |
+
# PDF Report Generation Function
|
277 |
+
# --------------------------
|
278 |
+
def generate_pdf_report(session_data):
|
279 |
+
pdf = FPDF()
|
280 |
+
pdf.add_page()
|
281 |
+
pdf.set_font("Arial", size=12)
|
282 |
+
pdf.cell(200, 10, txt="Patient Session Report", ln=True, align='C')
|
283 |
+
pdf.ln(10)
|
284 |
+
for key, value in session_data.items():
|
285 |
+
pdf.multi_cell(0, 10, txt=f"{key.capitalize()}: {value}")
|
286 |
+
reports_dir = "reports"
|
287 |
+
os.makedirs(reports_dir, exist_ok=True)
|
288 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
289 |
+
filename = f"{reports_dir}/{session_data.get('patient_name')}_{timestamp}.pdf"
|
290 |
+
pdf.output(filename)
|
291 |
+
return filename
|
292 |
+
|
293 |
+
# --------------------------
|
294 |
+
# Helper: Autofill Previous Patient Info
|
295 |
+
# --------------------------
|
296 |
+
def get_previous_patient_info(selected_patient):
|
297 |
+
conn = sqlite3.connect("users.db")
|
298 |
+
c = conn.cursor()
|
299 |
+
c.execute("SELECT patient_name, age, gender FROM patient_sessions WHERE patient_name=? ORDER BY session_timestamp DESC LIMIT 1", (selected_patient,))
|
300 |
+
record = c.fetchone()
|
301 |
+
conn.close()
|
302 |
+
if record:
|
303 |
+
return record[0], record[1], record[2]
|
304 |
+
else:
|
305 |
+
return "", None, ""
|
306 |
+
|
307 |
+
def get_previous_patients():
|
308 |
+
conn = sqlite3.connect("users.db")
|
309 |
+
c = conn.cursor()
|
310 |
+
c.execute("SELECT DISTINCT patient_name FROM patient_sessions")
|
311 |
+
records = c.fetchall()
|
312 |
+
conn.close()
|
313 |
+
return [r[0] for r in records]
|
314 |
+
|
315 |
+
# --------------------------
|
316 |
+
# Gradio UI Setup with External CSS
|
317 |
+
# --------------------------
|
318 |
+
with gr.Blocks(css=open("styles.css", "r").read(), theme="soft") as app:
|
319 |
+
user_session = gr.State(value="")
|
320 |
+
profile_visible = gr.State(value=False)
|
321 |
+
session_data_state = gr.State(value="")
|
322 |
+
|
323 |
+
with gr.Row(elem_id="header") as header_row:
|
324 |
+
with gr.Column(scale=8):
|
325 |
+
gr.Markdown("## Mental Health Chatbot")
|
326 |
+
with gr.Column(scale=4) as profile_container:
|
327 |
+
profile_button = gr.Button("👤", elem_id="profile_button", variant="secondary")
|
328 |
+
with gr.Column(visible=False, elem_id="profile_info_box") as profile_info_box:
|
329 |
+
profile_info = gr.HTML()
|
330 |
+
logout_button = gr.Button("Logout", elem_id="logout_button")
|
331 |
+
|
332 |
+
with gr.Column(visible=True, elem_id="login_page") as login_page:
|
333 |
+
gr.Markdown("## Login")
|
334 |
+
with gr.Row():
|
335 |
+
username_login = gr.Textbox(label="Username")
|
336 |
+
password_login = gr.Textbox(label="Password", type="password")
|
337 |
+
login_btn = gr.Button("Login")
|
338 |
+
login_output = gr.Textbox(label="Login Status", interactive=False)
|
339 |
+
gr.Markdown("New user? Click below to register.")
|
340 |
+
go_to_register = gr.Button("Go to Register")
|
341 |
+
|
342 |
+
with gr.Column(visible=False, elem_id="register_page") as register_page:
|
343 |
+
gr.Markdown("## Register")
|
344 |
+
new_username = gr.Textbox(label="New Username")
|
345 |
+
new_password = gr.Textbox(label="New Password", type="password")
|
346 |
+
full_name = gr.Textbox(label="Full Name")
|
347 |
+
email = gr.Textbox(label="Email")
|
348 |
+
register_btn = gr.Button("Register")
|
349 |
+
register_output = gr.Textbox(label="Registration Status", interactive=False)
|
350 |
+
gr.Markdown("Already have an account?")
|
351 |
+
back_to_login = gr.Button("Back to Login")
|
352 |
+
|
353 |
+
with gr.Tabs(visible=False, elem_id="main_panel") as main_panel:
|
354 |
+
with gr.Tab("Chatbot"):
|
355 |
+
with gr.Row():
|
356 |
+
with gr.Column(scale=1):
|
357 |
+
previous_patient = gr.Dropdown(label="Previous Patients", choices=[], interactive=True)
|
358 |
+
patient_name_input = gr.Textbox(placeholder="Enter patient name", label="Patient Name")
|
359 |
+
gender_input = gr.Dropdown(choices=list(gender_encoder.keys()), label="Gender")
|
360 |
+
age_input = gr.Number(label="Age")
|
361 |
+
symptoms_input = gr.Textbox(placeholder="Describe symptoms", label="Symptoms", lines=4)
|
362 |
+
submit = gr.Button("Submit")
|
363 |
+
generate_report_btn = gr.Button("Generate Report", visible=False)
|
364 |
+
with gr.Column(scale=1):
|
365 |
+
with gr.Row():
|
366 |
+
with gr.Column(scale=4, min_width=240): # Textbox column
|
367 |
+
diagnosis_textbox = gr.Textbox(label="Diagnosis",
|
368 |
+
interactive=False)
|
369 |
+
with gr.Column(scale=1, min_width=120): # Confidence column
|
370 |
+
diagnosis_conf_html = gr.HTML(elem_classes=["confidence-container"])
|
371 |
+
|
372 |
+
with gr.Row():
|
373 |
+
with gr.Column(scale=4, min_width=240):
|
374 |
+
medication_textbox = gr.Textbox(label="Medication",
|
375 |
+
interactive=False)
|
376 |
+
with gr.Column(scale=1, min_width=120):
|
377 |
+
medication_conf_html = gr.HTML(elem_classes=["confidence-container"])
|
378 |
+
|
379 |
+
with gr.Row():
|
380 |
+
with gr.Column(scale=4, min_width=240):
|
381 |
+
therapy_textbox = gr.Textbox(label="Therapy",
|
382 |
+
interactive=False)
|
383 |
+
with gr.Column(scale=1, min_width=120):
|
384 |
+
therapy_conf_html = gr.HTML(elem_classes=["confidence-container"])
|
385 |
+
summary_textbox = gr.Textbox(label="Concise Summary", interactive=False)
|
386 |
+
explanation_textbox = gr.Textbox(label="Explanation", interactive=False)
|
387 |
+
with gr.Row():
|
388 |
+
report_download = gr.File(label="Download Report", interactive=False)
|
389 |
+
|
390 |
+
def handle_chat_extended(patient_name, gender, age, symptoms):
|
391 |
+
if age is None or age <= 0:
|
392 |
+
error_msg = "Age must be greater than 0."
|
393 |
+
return (error_msg, "", error_msg, "", error_msg, "", error_msg, error_msg, gr.update(visible=False))
|
394 |
+
|
395 |
+
if age > 150:
|
396 |
+
error_msg2 = "Age must be lower than 150"
|
397 |
+
return (error_msg2, "", error_msg2, "", error_msg2, "", error_msg2, error_msg2, gr.update(visible=False))
|
398 |
+
|
399 |
+
if len(symptoms.split()) > 512:
|
400 |
+
msg = "Input exceeds maximum allowed length of 512 words."
|
401 |
+
return (msg, "", msg, "", msg, "", msg, msg, gr.update(visible=False))
|
402 |
+
|
403 |
+
full_statement = f"Patient Name: {patient_name}, Gender: {gender}, Age: {age}, Symptoms: {symptoms}"
|
404 |
+
summary = get_concise_rewrite(full_statement, max_tokens=150, temperature=0.7)
|
405 |
+
|
406 |
+
# Predict top 3 diagnoses
|
407 |
+
diagnosis_preds = predict_disease(full_statement) # Now returns list of (label, confidence)
|
408 |
+
diagnosis_display = "\n".join([f"{label}" for label, _ in diagnosis_preds])
|
409 |
+
|
410 |
+
def get_confidence_class(percentage):
|
411 |
+
if percentage <= 50:
|
412 |
+
return "confidence-low"
|
413 |
+
elif percentage <= 74:
|
414 |
+
return "confidence-medium"
|
415 |
+
else:
|
416 |
+
return "confidence-high"
|
417 |
+
|
418 |
+
diagnosis_conf_html_val = "<div class='confidence-multi'>" + "<br>".join([
|
419 |
+
f"<div class='confidence-display'><span class='confidence-value {get_confidence_class(conf * 100)}'>{conf * 100:.1f}% confidence</span></div>"
|
420 |
+
for _, conf in diagnosis_preds
|
421 |
+
]) + "</div>"
|
422 |
+
|
423 |
+
# Predict medication and therapy
|
424 |
+
(med_pred, med_conf), (therapy_pred, therapy_conf) = predict_med_therapy(symptoms, age, gender)
|
425 |
+
med_percentage = med_conf * 100
|
426 |
+
therapy_percentage = therapy_conf * 100
|
427 |
+
|
428 |
+
def get_conf_html(percentage):
|
429 |
+
return f"""
|
430 |
+
<div class="confidence-display">
|
431 |
+
<span class="confidence-value {get_confidence_class(percentage)}">
|
432 |
+
{percentage:.1f}% confidence
|
433 |
+
</span>
|
434 |
+
</div>
|
435 |
+
"""
|
436 |
+
|
437 |
+
medication_conf_html_val = get_conf_html(med_percentage)
|
438 |
+
therapy_conf_html_val = get_conf_html(therapy_percentage)
|
439 |
+
|
440 |
+
# Explanation
|
441 |
+
top_diag_labels = ", ".join([label for label, _ in diagnosis_preds])
|
442 |
+
explanation = get_explanation(full_statement, f"{top_diag_labels}, {med_pred} and {therapy_pred}")
|
443 |
+
|
444 |
+
# Prepare session data
|
445 |
+
top_diag_with_conf = ", ".join([f"{label} ({conf * 100:.1f}%)" for label, conf in diagnosis_preds])
|
446 |
+
session_data = {
|
447 |
+
"patient_name": patient_name,
|
448 |
+
"age": age,
|
449 |
+
"gender": gender,
|
450 |
+
"symptoms": symptoms,
|
451 |
+
"diagnosis": top_diag_with_conf,
|
452 |
+
"medication": f"{med_pred} ({med_percentage:.1f}% confidence)",
|
453 |
+
"therapy": f"{therapy_pred} ({therapy_percentage:.1f}% confidence)",
|
454 |
+
"summary": summary,
|
455 |
+
"explanation": explanation,
|
456 |
+
"session_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
457 |
+
}
|
458 |
+
session_data_state.value = json.dumps(session_data)
|
459 |
+
|
460 |
+
# Save to chat history
|
461 |
+
conn = sqlite3.connect("users.db")
|
462 |
+
c = conn.cursor()
|
463 |
+
if user_session.value:
|
464 |
+
c.execute("INSERT INTO chat_history (username, message, response) VALUES (?, ?, ?)",
|
465 |
+
(user_session.value, full_statement, top_diag_with_conf))
|
466 |
+
conn.commit()
|
467 |
+
conn.close()
|
468 |
+
|
469 |
+
return (
|
470 |
+
diagnosis_display, diagnosis_conf_html_val,
|
471 |
+
med_pred, medication_conf_html_val,
|
472 |
+
therapy_pred, therapy_conf_html_val,
|
473 |
+
summary, explanation,
|
474 |
+
gr.update(visible=True)
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
submit.click(handle_chat_extended,
|
479 |
+
inputs=[patient_name_input, gender_input, age_input, symptoms_input],
|
480 |
+
outputs=[diagnosis_textbox, diagnosis_conf_html, medication_textbox, medication_conf_html,
|
481 |
+
therapy_textbox, therapy_conf_html, summary_textbox, explanation_textbox,
|
482 |
+
generate_report_btn])
|
483 |
+
|
484 |
+
def handle_generate_report():
|
485 |
+
try:
|
486 |
+
data = json.loads(session_data_state.value)
|
487 |
+
except:
|
488 |
+
return None
|
489 |
+
pdf_file = generate_pdf_report(data)
|
490 |
+
data["username"] = user_session.value
|
491 |
+
data["appointment_date"] = ""
|
492 |
+
data["pdf_report"] = pdf_file
|
493 |
+
insert_patient_session(data)
|
494 |
+
return pdf_file
|
495 |
+
|
496 |
+
generate_report_btn.click(handle_generate_report, outputs=report_download)
|
497 |
+
|
498 |
+
def autofill_previous(selected_patient):
|
499 |
+
name, age_val, gender_val = get_previous_patient_info(selected_patient)
|
500 |
+
return name, age_val, gender_val
|
501 |
+
|
502 |
+
previous_patient.change(autofill_previous,
|
503 |
+
inputs=[previous_patient],
|
504 |
+
outputs=[patient_name_input, age_input, gender_input])
|
505 |
+
|
506 |
+
with gr.Tab("Chat History"):
|
507 |
+
history_output = gr.Textbox(label="Chat History", interactive=False)
|
508 |
+
load_history_btn = gr.Button("Load History")
|
509 |
+
|
510 |
+
def load_history():
|
511 |
+
if user_session.value:
|
512 |
+
history = get_chat_history(user_session.value)
|
513 |
+
return "\n".join([f"[{h[2]}] {h[0]}\nBot: {h[1]}" for h in history])
|
514 |
+
else:
|
515 |
+
return "Please log in to view history."
|
516 |
+
|
517 |
+
load_history_btn.click(load_history, outputs=history_output)
|
518 |
+
|
519 |
+
with gr.Tab("Book an Appointment"):
|
520 |
+
with gr.Row():
|
521 |
+
with gr.Column():
|
522 |
+
patient_name_appt = gr.Textbox(label="Patient Name", placeholder="Enter your name")
|
523 |
+
doctor_name = gr.Dropdown(choices=["Dr. Smith", "Dr. Johnson", "Dr. Lee"], label="Select Doctor")
|
524 |
+
appointment_date = gr.Textbox(label="Appointment Date", placeholder="YYYY-MM-DD")
|
525 |
+
appointment_time = gr.Textbox(label="Appointment Time", placeholder="HH:MM (24-hour format)")
|
526 |
+
reason = gr.TextArea(label="Reason for Visit", placeholder="Describe your symptoms or reason for the visit")
|
527 |
+
book_button = gr.Button("Book Appointment")
|
528 |
+
with gr.Column():
|
529 |
+
booking_output = gr.Textbox(label="Booking Confirmation", interactive=False)
|
530 |
+
|
531 |
+
def book_appointment(patient_name, doctor_name, appointment_date, appointment_time, reason):
|
532 |
+
if not user_session.value:
|
533 |
+
return "Please log in to book an appointment."
|
534 |
+
patient_name = (patient_name or "").strip()
|
535 |
+
doctor_name = (doctor_name or "").strip()
|
536 |
+
appointment_date = (appointment_date or "").strip()
|
537 |
+
appointment_time = (appointment_time or "").strip()
|
538 |
+
reason = (reason or "").strip()
|
539 |
+
if not (patient_name and doctor_name and appointment_date and appointment_time and reason):
|
540 |
+
return "Please fill in all the fields."
|
541 |
+
if not re.fullmatch(r"[A-Za-z ]+", patient_name):
|
542 |
+
return "Patient name should contain only letters and spaces."
|
543 |
+
try:
|
544 |
+
datetime.strptime(appointment_date, "%Y-%m-%d")
|
545 |
+
except ValueError:
|
546 |
+
return "Appointment date must be in YYYY-MM-DD format."
|
547 |
+
try:
|
548 |
+
datetime.strptime(appointment_time, "%H:%M")
|
549 |
+
except ValueError:
|
550 |
+
return "Appointment time must be in HH:MM (24-hour) format."
|
551 |
+
confirmation = (f"Appointment booked for {patient_name} with {doctor_name} on {appointment_date} at {appointment_time}.\n\n"
|
552 |
+
f"Reason: {reason}")
|
553 |
+
return confirmation
|
554 |
+
|
555 |
+
book_button.click(book_appointment,
|
556 |
+
inputs=[patient_name_appt, doctor_name, appointment_date, appointment_time, reason],
|
557 |
+
outputs=booking_output)
|
558 |
+
|
559 |
+
with gr.Tab("Patient Sessions"):
|
560 |
+
gr.Markdown("### Search Patient Sessions")
|
561 |
+
search_name = gr.Textbox(label="Patient Name (optional)")
|
562 |
+
search_date = gr.Textbox(label="Date (YYYY-MM-DD, optional)")
|
563 |
+
search_button = gr.Button("Search")
|
564 |
+
sessions_output = gr.Textbox(label="Sessions", interactive=False)
|
565 |
+
|
566 |
+
def search_sessions(name, date):
|
567 |
+
sessions = get_patient_sessions(filter_name=name, filter_date=date)
|
568 |
+
if sessions:
|
569 |
+
output = "\n\n".join([f"Patient: {s[0]}\nAge: {s[1]}\nGender: {s[2]}\nSymptoms: {s[3]}\nDiagnosis: {s[4]}\nMedication: {s[5]}\nTherapy: {s[6]}\nSummary: {s[7]}\nExplanation: {s[8]}\nReport: {s[9]}\nSession Time: {s[10]}" for s in sessions])
|
570 |
+
return output
|
571 |
+
else:
|
572 |
+
return "No sessions found."
|
573 |
+
|
574 |
+
search_button.click(search_sessions, inputs=[search_name, search_date], outputs=sessions_output)
|
575 |
+
|
576 |
+
def handle_login(username, password):
|
577 |
+
if login_user(username, password):
|
578 |
+
user_session.value = username
|
579 |
+
prev_choices = get_previous_patients()
|
580 |
+
return (f"Welcome, {username}!",
|
581 |
+
gr.update(visible=True),
|
582 |
+
gr.update(visible=False),
|
583 |
+
gr.update(visible=True),
|
584 |
+
gr.update(choices=prev_choices))
|
585 |
+
else:
|
586 |
+
return "Invalid credentials.", gr.update(), gr.update(), gr.update(), gr.update()
|
587 |
+
|
588 |
+
def handle_register(username, password, full_name, email):
|
589 |
+
return register_user(username, password, full_name, email)
|
590 |
+
|
591 |
+
def go_to_register_page():
|
592 |
+
return gr.update(visible=False), gr.update(visible=True)
|
593 |
+
|
594 |
+
def back_to_login_page():
|
595 |
+
return gr.update(visible=True), gr.update(visible=False)
|
596 |
+
|
597 |
+
login_btn.click(handle_login,
|
598 |
+
inputs=[username_login, password_login],
|
599 |
+
outputs=[login_output, main_panel, login_page, header_row])
|
600 |
+
go_to_register.click(go_to_register_page, outputs=[login_page, register_page])
|
601 |
+
register_btn.click(handle_register,
|
602 |
+
inputs=[new_username, new_password, full_name, email],
|
603 |
+
outputs=register_output)
|
604 |
+
back_to_login.click(back_to_login_page, outputs=[login_page, register_page])
|
605 |
+
|
606 |
+
|
607 |
+
# Toggle profile function
|
608 |
+
def toggle_profile(user, current_visible):
|
609 |
+
if not user:
|
610 |
+
return gr.update(visible=False), False, ""
|
611 |
+
new_visible = not current_visible
|
612 |
+
info = get_user_info(user) if new_visible else ""
|
613 |
+
return gr.update(visible=new_visible), new_visible, info
|
614 |
+
|
615 |
+
|
616 |
+
# Connect profile button click with correct input order:
|
617 |
+
profile_button.click(
|
618 |
+
toggle_profile,
|
619 |
+
inputs=[user_session, profile_visible],
|
620 |
+
outputs=[profile_info_box, profile_visible, profile_info]
|
621 |
+
)
|
622 |
+
|
623 |
+
|
624 |
+
# Handle login: update previous patients dropdown
|
625 |
+
def handle_login(username, password):
|
626 |
+
if login_user(username, password):
|
627 |
+
user_session.value = username
|
628 |
+
prev_choices = get_previous_patients()
|
629 |
+
return (f"Welcome, {username}!",
|
630 |
+
gr.update(visible=True), # main_panel visible
|
631 |
+
gr.update(visible=False), # login_page hidden
|
632 |
+
gr.update(visible=True), # header_row visible
|
633 |
+
gr.update(choices=prev_choices)) # update dropdown choices
|
634 |
+
else:
|
635 |
+
return "Invalid credentials.", gr.update(), gr.update(), gr.update(), gr.update()
|
636 |
+
|
637 |
+
|
638 |
+
# Connect login button click:
|
639 |
+
login_btn.click(
|
640 |
+
handle_login,
|
641 |
+
inputs=[username_login, password_login],
|
642 |
+
outputs=[login_output, main_panel, login_page, header_row, previous_patient]
|
643 |
+
)
|
644 |
+
|
645 |
+
init_db()
|
646 |
+
app.launch()
|