SEO / app.py
Merlintxu's picture
Create app.py
dcf8a98 verified
raw
history blame
9.45 kB
import os
import json
import logging
import re
import requests
import hashlib
from urllib.parse import urlparse, urljoin
from typing import List, Dict, Optional, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
import PyPDF2
from io import BytesIO
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer
import spacy
import gradio as gr
# Configuración avanzada
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class AdvancedSEOAanalyzer:
def __init__(self, sitemap_url: str):
self.sitemap_url = sitemap_url
self.session = self._configure_session()
self.models = self._load_models()
self.processed_urls = set()
self.link_graph = defaultdict(list)
self.content_store = {}
self.documents = []
def _configure_session(self) -> requests.Session:
session = requests.Session()
retry = Retry(
total=5,
backoff_factor=1,
status_forcelist=[500, 502, 503, 504]
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('https://', adapter)
session.headers.update({
'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0; +https://seo.example.com/bot)'
})
return session
def _load_models(self) -> Dict:
return {
'summarization': pipeline("summarization",
model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1),
'qa': pipeline("question-answering",
model="deepset/roberta-base-squad2",
tokenizer="deepset/roberta-base-squad2"),
'ner': pipeline("ner",
model="dslim/bert-base-NER",
aggregation_strategy="simple"),
'semantic': SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2'),
'spacy': spacy.load("en_core_web_lg")
}
async def download_content(self, url: str) -> Optional[Dict]:
if url in self.processed_urls:
return None
try:
response = self.session.get(url, timeout=15)
response.raise_for_status()
content_type = response.headers.get('Content-Type', '')
if 'application/pdf' in content_type:
return self._process_pdf(url, response.content)
elif 'text/html' in content_type:
return await self._process_html(url, response.text)
else:
logger.warning(f"Unsupported content type: {content_type}")
return None
except Exception as e:
logger.error(f"Error downloading {url}: {str(e)}")
return None
def _process_pdf(self, url: str, content: bytes) -> Dict:
text = ""
with BytesIO(content) as pdf_file:
reader = PyPDF2.PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
doc_hash = hashlib.sha256(content).hexdigest()
self._save_document(url, content, 'pdf')
return {
'url': url,
'type': 'pdf',
'content': text,
'hash': doc_hash,
'links': []
}
async def _process_html(self, url: str, html: str) -> Dict:
soup = BeautifulSoup(html, 'lxml')
main_content = self._extract_main_content(soup)
links = self._extract_links(url, soup)
self._save_document(url, html.encode('utf-8'), 'html')
return {
'url': url,
'type': 'html',
'content': main_content,
'hash': hashlib.sha256(html.encode()).hexdigest(),
'links': links,
'metadata': self._extract_metadata(soup)
}
def _extract_links(self, base_url: str, soup: BeautifulSoup) -> List[Dict]:
links = []
base_domain = urlparse(base_url).netloc
for tag in soup.find_all(['a', 'link'], href=True):
href = tag['href']
full_url = urljoin(base_url, href)
parsed = urlparse(full_url)
link_type = 'internal' if parsed.netloc == base_domain else 'external'
file_type = 'other'
if parsed.path.lower().endswith(('.pdf', '.doc', '.docx')):
file_type = 'document'
elif parsed.path.lower().endswith(('.jpg', '.png', '.gif')):
file_type = 'image'
links.append({
'url': full_url,
'type': link_type,
'file_type': file_type,
'anchor': tag.text.strip()
})
return links
def _extract_metadata(self, soup: BeautifulSoup) -> Dict:
metadata = {
'title': soup.title.string if soup.title else '',
'description': '',
'keywords': [],
'open_graph': {}
}
meta_tags = soup.find_all('meta')
for tag in meta_tags:
name = tag.get('name', '').lower()
property = tag.get('property', '').lower()
content = tag.get('content', '')
if name == 'description':
metadata['description'] = content
elif name == 'keywords':
metadata['keywords'] = [kw.strip() for kw in content.split(',')]
elif property.startswith('og:'):
key = property[3:]
metadata['open_graph'][key] = content
return metadata
def analyze_content(self, content: Dict) -> Dict:
analysis = {
'summary': self.models['summarization'](content['content'],
max_length=150,
min_length=30)[0]['summary_text'],
'entities': self.models['ner'](content['content']),
'semantic_embedding': self.models['semantic'].encode(content['content']),
'seo_analysis': self._perform_seo_analysis(content)
}
if content['type'] == 'pdf':
analysis['document_analysis'] = self._analyze_document_structure(content)
return analysis
def _perform_seo_analysis(self, content: Dict) -> Dict:
text = content['content']
doc = self.models['spacy'](text)
return {
'readability_score': self._calculate_readability(text),
'keyword_density': self._calculate_keyword_density(text),
'heading_structure': self._analyze_headings(doc),
'content_length': len(text.split()),
'semantic_topics': self._extract_semantic_topics(text)
}
def _extract_semantic_topics(self, text: str) -> List[str]:
vectorizer = TfidfVectorizer(stop_words='english', ngram_range=(1,2))
tfidf = vectorizer.fit_transform([text])
feature_array = np.array(vectorizer.get_feature_names_out())
tfidf_sorting = np.argsort(tfidf.toarray()).flatten()[::-1]
return feature_array[tfidf_sorting][:5].tolist()
def run_analysis(self, max_workers: int = 4) -> Dict:
sitemap_urls = self._parse_sitemap()
results = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(self.download_content, url)
for url in sitemap_urls]
for future in as_completed(futures):
result = future.result()
if result:
analyzed = self.analyze_content(result)
results.append({**result, **analyzed})
self._update_link_graph(result)
self._save_full_analysis(results)
return {
'total_pages': len(results),
'document_types': self._count_document_types(results),
'link_analysis': self._analyze_link_graph(),
'content_analysis': self._aggregate_content_stats(results)
}
def _save_document(self, url: str, content: bytes, file_type: str) -> None:
parsed = urlparse(url)
path = parsed.path.lstrip('/')
filename = f"documents/{parsed.netloc}/{path}" if path else f"documents/{parsed.netloc}/index"
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename + f'.{file_type}', 'wb') as f:
f.write(content)
def launch_interface(self):
interface = gr.Interface(
fn=self.run_analysis,
inputs=gr.Textbox(label="Sitemap URL"),
outputs=[
gr.JSON(label="Analysis Results"),
gr.File(label="Download Data")
],
title="Advanced SEO Analyzer",
description="Analyze websites with AI-powered SEO insights"
)
interface.launch()
if __name__ == "__main__":
analyzer = AdvancedSEOAanalyzer("https://www.example.com/sitemap.xml")
analyzer.launch_interface()